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Abstract

The Cox Proportional Hazards (CPH) Model, also known as the Cox Model,
is a statistical method used for survival analysis in medical research. It allows
researchers to assess the effect of multiple factors on the time to an event of
interest, such as death or disease onset, while controlling for other variables.
The Cox Model is a type of regression model that estimates the hazard ratio,
which is the ratio of the hazard rates between two groups. The hazard rate is
the probability of experiencing an event of interest at a given time, given that
the individual has survived up to that point in time.
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1 Mathematical Formulation

The CPH model consists of a system of equations, which can be expressed mathemat-
ically as:

h(t|x) = ho(t) exp β1x1 + β2x2 + · · ·+ βpxp (1)

h(t|x) = ho(t) exp ((x− x̄)′β) (2)

where h(t|x) is the hazard hazard rate at time t for an individual with a set of predictor
variables x, ho(t) is the baseline hazard rate at time t, which is the hazard rate when all
predictor variables are set to 0. β1x1, β2x2, · · ·βpxp are the coefficients for the predictor
variables x1, x2, x3, · · ·, xp , and exp(β1x1, β2x2, · · ·βpxp) is the is the hazard ratio,
which represents the proportional increase or decrease in the hazard rate for a one-unit
increase in the predictor variable, holding all other variables constant.

2 Assumptions

The Cox Model assumes that the hazard ratio is constant over time, which means that
the proportional effect of a predictor variable on the hazard rate remains the same over
time.

The Cox Model estimates the values of β1x1, β2x2, · · ·βpxp using maximum likelihood
estimation and provides estimates of the hazard ratios and their confidence intervals.
The proportional hazards assumption is tested by examining the Schoenfeld residuals,
which should not show any significant pattern over time.
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3 Schoenfeld Residuals

The Schoenfeld residuals are a type of residual that measure the difference between
the observed covariate values and the expected covariate values for each individual at
each event time.

The proportional hazards assumption states that the effect of a covariate on the haz-
ard rate is constant over time. In other words, the hazard ratios for each covariate
should remain constant over time. If this assumption is violated, it means that the
effect of the covariate on the hazard rate is not proportional and may change over time.

To test the proportional hazards assumption using the Schoenfeld residuals, we can
follow these steps:

1. Fit the CPH model using the Breslow method (or another method).

2. Calculate the Schoenfeld residuals for each covariate by regressing the residuals
against the covariate values for each individual.

3. Plot the Schoenfeld residuals against time and examine whether there is a signif-
icant trend over time. If the proportional hazards assumption holds, the Schoen-
feld residuals should not show any significant pattern over time.

4. Perform a formal test of the proportional hazards assumption by regressing the
Schoenfeld residuals against time, and examining whether the coefficient for time
is significantly different from zero. A significant coefficient indicates that the
proportional hazards assumption is violated.

The regression of the Schoenfeld residuals against time can be written as:

r(it) = β(t)zi (3)

where r(it) is the Schoenfeld residual for individual i at time t, β(t) is a vector of re-
gression coefficients that varies with time, and zi is a vector of covariate values for
individual i.

If the proportional hazards assumption holds, then β(t) should be equal to zero for all
values of t. To test this, we can perform a Cox regression of the Schoenfeld residuals
against time, and test whether the coefficient for time is significantly different from
zero. This can be written as:

h(t|z) = h0(t)× exp(β′z + γt) (4)

where h(t|z) is the hazard rate at time t for a given set of covariate values z, h0(t) is the
baseline hazard rate at time t , β′z is the linear predictor term for the covariate values
z, and γ is the coefficient for time, which represents the effect of time on the hazard rate.

If γ is significantly different from zero, it indicates that the effect of the covariate on
the hazard rate is not proportional over time, and the proportional hazards assumption
is violated.

To use the Cox Model, researchers need to have data on the time of the event of
interest (such as the time of death or disease onset), as well as information on the
predictor variables that may influence the hazard rate (such as age, sex, or treatment
group). The model produces estimates of the hazard ratios for each predictor variable,
along with confidence intervals and p-values to assess the statistical significance of the
associations.
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4 Breslow Method Using Python

The Breslow method, also known as the partial likelihood method, is a commonly used
method for estimating the Cox proportional hazards model in survival analysis. The
method is used to estimate the regression coefficients and corresponding hazard ratios
for the predictor variables.

To demonstrate the Breslow method using Python, we can use the lifelines package,
which is a popular Python library for survival analysis. Here is an example of how
to use the CoxPHFitter class from lifelines to fit a CPH model using the Breslow
method:

# Import necessary packages
import pandas as pd
from lifelines import CoxPHFitter

# Load survival data
data = pd.read_csv(’survival_data.csv’)

# Create a new instance of the CoxPHFitter class
cph = CoxPHFitter ()

# Fit the Cox proportional hazards model using the Breslow method
cph.fit(data , ’time_to_event ’, event_col=’event’, show_progress=True)

In the above code, we first load our survival data into a Pandas DataFrame called
data, which should include columns for the time to event (e.g. time to death or time
to disease progression) and an event indicator variable (e.g. a binary variable indicat-
ing whether the event occurred). We then create a new instance of the CoxPHFitter
class from the lifelines package and call the fit method to fit the CPH model using
the Breslow method.

The fit method requires the following arguments:

data: the DataFrame containing the survival data.
time_to_event: the name of the column containing the time to event data.
event_col: the name of the column containing the event indicator data.

We can also specify other optional arguments, such as show_progress=True to display
a progress bar during the fitting process. After fitting the model, we can access the
estimated regression coefficients and corresponding hazard ratios using the summary
method:

# Print summary of the fitted model
print(cph.summary)

This will display a table showing the estimated regression coefficients, hazard ratios,
standard errors, and p-values for each predictor variable, along with other information
about the model fit.

The Breslow method is the default baseline_estimation_method parameter in the
CPH model, with spline, and piecewise being additional parameters.

5 Lasso Regularization

L1 regularization, also known as Lasso regularization, is a technique used in the CPH
model to penalize the magnitude of the regression coefficients associated with the
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covariates. The L1 penalty encourages some of the coefficients to be exactly zero,
leading to a sparse model with fewer covariates. Mathematically, the CPH model with
L1 penalty can be expressed as:

L(β) =
∏
i

h(ti|xi)∑
j h(tj|xj)

δ exp(β1xi + β2x2i + · · ·+ βpxpi) (5)

The L1 penalty is added to the log-likelihood function of the CPH model as follows:

logL(β′) =
∑
i

δi

(
β′xi − log

∑
j

δ exp(β′xj)

)
− λ

∑
j

|βj| (6)

where δi is an indicator variable that equals 1 if the ith subject has an event and 0 oth-
erwise and |βj| is the absolute value of the jth coefficient The first term in the equation
is the log-likelihood of the CPH model and the second term is the L1 penalty which
is a sum of the absolute values of the regression coefficients multiplied by the penalty
parameter λ.

The objective of fitting the CPH model with L1 penalty is to find the set of regression
coefficients that maximizes the log-likelihood function subject to the c penalty. This
is equivalent to minimizing the negative log-likelihood function plus the L1 penalty,
which can be solved using optimization algorithms such as coordinate descent or Least
Angle Regression (LARS). The resulting set of coefficients can then be used to make
predictions for new subjects.

In lifelines, the L1 -penalized CPH model can be fit using the CoxPHFitter class with
the penalizer parameter set to 'lasso'. Here is an example of how to fit an L1 -
penalized CPH model in lifelines:

from lifelines.datasets import load_rossi
from lifelines import CoxPHFitter

data = load_rossi ()
cph = CoxPHFitter(penalizer=’lasso’, l1_ratio =1.0)
cph.fit(data , duration_col=’week’, event_col=’arrest ’)
cph.print_summary ()

In this example, we load the Rossi dataset, which contains information about 432
convicts released from Maryland state prisons who were followed up for up to 5 years
after release. We then create an instance of the CoxPHFitter class and set the penalizer
parameter to 'lasso' and the l1_ratio parameter to 1.0 to perform L1 -penalized
CPH regression. Finally, we fit the model to the data using the duration_col and
event_col arguments to specify the time-to-event and event indicator columns, and
we print a summary of the model’s coefficients and performance.

References

[1] Davidson-Pilon, C., & Lifelines contributors. (2021). Lifelines: Survival analysis in
Python. Zenodo. https://doi.org/10.5281/zenodo.5562133

4


