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Abstract

Biased evaluations and decisions stemming from algorithms have the potential to
disproportionately affect various demographic groups. As artificial intelligence
becomes more integrated into critical decision-making processes, it is imperative
to address these biases to ensure fair and equitable outcomes. This paper dis-
cusses the nature of algorithmic bias, the impact of such biases on real-world
applications, and the effectiveness of various fairness metrics in mitigating these
biases. By exploring the relationships between demographic parity, equalized
odds, and Pareto efficiency, the paper highlights the challenges and necessary
considerations in designing unbiased AI systems. The goal is to foster a deeper
understanding of how to balance fairness and utility in machine learning appli-
cations, ensuring that these technologies contribute positively to society.
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1 Algorithmic Bias

Algorithmic bias refers to the presence of inequity in the predictions or decisions made
by an AI system or algorithm. In the context of binary decision outcomes, algorithmic
bias can appear in various forms, resulting in some groups being unfairly impacted by
the system’s decisions. Binary decision outcomes involve two possible results: positive
(1) or negative (0). For instance, an AI system designed to accept or reject loan ap-
plications may assign a positive outcome (1) to loan approval and a negative outcome
(0) to loan rejection. Several factors can introduce algorithmic bias into the system,
including skewed training data, prejudiced labels, or inherent issues in the algorithm.
Discriminatory training data can result from historical disparities or systemic biases
that affect specific demographic groups. When the algorithm is trained on this preju-
diced data, it might unintentionally perpetuate the existing biases in its decisions.

A healthcare-related example of algorithmic bias can be found in predictive algorithms
used for allocating medical resources, such as identifying high-risk patients who may
need additional care or interventions. These algorithms analyze patient demographics,
medical history, and other factors to predict outcomes and assist healthcare providers
in decision-making.

However, algorithmic bias can emerge in these predictive healthcare models if the
training data or algorithms used are biased due to inadequate representation of di-
verse health conditions or demographic groups. For instance, if a model is trained
on a dataset that over-represents a particular demographic group or under-represents
certain health conditions, it may develop biases that affect its predictions and recom-
mendations.
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Regarding binary decision outcomes, algorithmic bias can result in a disparate impact
on distinct demographic groups.

Disproportionate false positives occur when a specific group receives more positive
outcomes than warranted, not reflective of their actual merits or qualifications. For
instance, an algorithm may approve loans for individuals from a particular demographic
group at a higher rate, even if they present a higher default risk.

Disproportionate false negatives can also occur when a group experiences more negative
outcomes than warranted. For example, in loan applications, an algorithm might
disproportionately reject eligible applicants from a specific demographic due to biased
data.

To address algorithmic bias in binary decision outcomes, it is essential to consider fair-
ness metrics such as demographic parity—a condition where decisions are independent
of the protected demographic features, ensuring equal acceptance rates across different
groups. By integrating these fairness principles and actively working to reduce biases,
we can develop more just algorithms that yield fairer decisions for all parties involved.

Example: Classifying Kidney Transplant Eligibility

This example assesses kidney transplant eligibility based on critical factors such as
blood pressure, age, height, and weight, which are crucial for determining a patient’s
suitability for surgery and ensuring successful post-transplant outcomes. Addition-
ally, while sex and race may inform assessments of genetic predispositions and specific
health risks, these factors are incorporated with a commitment to ethical standards
and equity. The decision is primarily driven by medical evaluations and organ com-
patibility, adhering to guidelines that ensure practices are scientifically justified and
ethically sound. The binary decision, denoted as B, indicates whether a patient is
approved (Yes = 1) or not approved (No = 0) for a kidney transplant.

The expression E[D] ̸= E[D|A] illustrates that the expected decision D across the gen-
eral population does not equal the expected decision within specific demographic groups
A (e.g., defined by race). This disparity suggests a violation of demographic parity,
indicating that decisions are not made independently of race, thereby disadvantaging
or favoring certain groups. Such insights drive the need for continuous review and
adaptation of eligibility criteria, ensuring they are based on the most current scientific
evidence and ethical considerations.

The critical outcome to consider is patient survival following the transplant decision.
These eligibility criteria are integrated within a broader framework of patient-centered
care and public health goals, aiming to reduce the burden of kidney disease while
improving overall patient outcomes. The multi-disciplinary transplant teams, including
nephrologists, surgeons, and social workers, ensure that all aspects of the patient’s
health and social context are considered, promoting fairness and efficiency in the use
of scarce medical resources like donor organs.

Furthermore, It is crucial to ensure that the integration of race, sex, and other sensitive
attributes in assessments, which addresses genetic factors affecting disease trajectory
and organ compatibility, does not lead to systematic bias. Ongoing training in cultural
competence and involving patients in decision-making processes are essential to main-
tain transparency and uphold ethical standards in healthcare. This approach not only
improves transplant outcomes but also ensures equitable healthcare practices.
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2 Group Dependent Algorithmic Bias

Expanding on the concept of algorithmic bias, this section examines how disparities in
false positive and false negative rates can significantly impact different demographic
groups. In situations where biases disproportionately affect certain groups, these dif-
ferences can lead to unjust outcomes by exacerbating inequalities within the healthcare
system.

Equalized odds is a fairness metric that necessitates both true positive rates (TPR) and
false positive rates (FPR) to be equal across all demographic groups. It ensures that
the algorithm does not perform differently for different demographic groups, thereby
upholding fairness in outcomes. The failure to meet this metric, highlighted by the
inequality E ̸= E[R|O,A] indicates that expected outcomes E vary based on race R,
outcome O, and demographic group A. This variation points to potential systemic
biases that can influence algorithmic decisions, emphasizing a crucial area for ongoing
scrutiny and improvement.

Biases in decision-making systems, particularly those related to life-critical applications
such as kidney transplant eligibility, can have profound consequences. For instance, if
certain racial groups face systematic disadvantages due to biased algorithms, this could
translate into significant disparities in treatment outcomes, including higher mortality
rates or longer wait times for organ transplants. Such biases challenge the ethical
foundations of medical decision-making and necessitate robust, continuous revisions to
ensure all applications in healthcare adhere to ethical standards and do not perpetuate
or exacerbate health inequities.

One demographic group experiencing a higher TPR than another, meaning a higher
percentage of true positive cases, points to an underlying issue where certain groups are
favored over others. Similarly, if a higher percentage of false negative cases are identified
within one group, this could lead to undue negative consequences for individuals in that
group, further compounding the issue of fairness.

Conversely, One demographic group experience a higher FPR than another, meaning
that a higher percentage of false positive cases are identified within that group. This
could lead to undue negative consequences for individuals in that group, even if they
should not have been subjected to those consequences based on their true status.

Separation, another fairness criterion, is also critical in addressing biases. It requires
that the scores or probabilities generated by an algorithm be conditionally indepen-
dent of protected attributes (e.g., demographic group), given the true outcomes. This
ensures that the treatment of individuals within different demographic groups is fair
and unbiased, even if the algorithms and true outcomes are complex. The separation
criterion requires that the decision scores or probabilities output by a model be statisti-
cally independent of any protected attributes when conditioned on the actual outcome.
Mathematically, this can be described using conditional probabilities:

The separation criterion can be mathematically expressed as:

P (Ŷ = y|A = a, Y = y′) = P (Ŷ = y|Y = y′) (1)

Here, Ŷ represents the predicted outcome by the model, A is the protected attribute,
and Y is the actual outcome. This criterion requires that the probability distribution
of the predictions Ŷ should be the same across different groups defined by A for each
actual outcome Y .
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After discussing the theoretical basis of the separation criterion, the following algo-
rithm demonstrates how this criterion might be implemented to ensure fair treatment
across different demographic groups, as defined by protected attributes. The necessary
structures are initialized and the conditional distributions needed to verify whether the
separation criterion is met effectively are computed.

Algorithm 1 Check Separation Criterion

1: Initialize conditional distributions as an empty dictionary
2: for each outcome y′ in true outcomes do
3: Extract sub predictions, sub attributes where true outcomes = y′

4: for each attribute a in sub attributes do
5: Extract group predictions where sub attributes = a
6: Compute the distribution of group predictions
7: Store this distribution in conditional distributions[y′][a]
8: end for
9: end for
10: satisfied← True
11: for each outcome y′ in true outcomes do
12: Compute the overall distribution of sub predictions for y′

13: for each attribute a in conditional distributions[y′] do
14: if distribution significantly differs from the overall distribution then
15: satisfied← False
16: break
17: end if
18: end for
19: if not satisfied then
20: break
21: end if
22: end for
23: return satisfied

To address these ongoing issues of bias and fairness, implementing comprehensive ma-
chine learning techniques, re-sampling methods, and adjusting decision thresholds are
vital. This approach not only aims to correct for disparities but also to develop algo-
rithms that can consistently ensure fair treatment across all demographic groups.

The primary objective remains to achieve a consistent expected outcome across all
demographic groups, thereby fostering fair and accurate decision-making that respects
the diversity and rights of all individuals.

3 Equality of Outcome vs. Demographic Parity

Equality of outcome is a fairness metric that aims to ensure that each demographic
group achieves the same rate of positive outcomes, regardless of the underlying differ-
ences between groups. However, enforcing equality of outcome may lead to relative
harm in some cases, specifically through under-acceptance.
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Under-acceptance occurs when individuals who deserve a positive outcome (e.g., qual-
ified job applicants or loan recipients) are not given the opportunity they merit due to
the enforcement of equality of outcome. This can happen if a higher-performing demo-
graphic group is held back to achieve equal outcomes with a lower-performing group,
causing members of the higher-performing group to be unfairly denied opportunities
they would have otherwise received.

Demographic parity, on the other hand, is a fairness metric that focuses on ensur-
ing equal acceptance rates across demographic groups, without considering individual
qualifications or performance. Demographic parity ensures that each group receives
the same proportion of positive outcomes, without making adjustments based on the
group’s qualifications or abilities. Since demographic parity does not involve redis-
tributing outcomes based on group performance, it does not create under-acceptance
in the same way as equality of outcome. However, it is important to note that demo-
graphic parity does not account for differences in qualifications between groups, which
can lead to other forms of unfairness. For example, demographic parity might result
in over-acceptance for a less-qualified group or under-acceptance for a more-qualified
group, as it only focuses on achieving equal acceptance rates.

While demographic parity avoids under-acceptance issues associated with equality of
outcome, it may not provide a complete fairness solution, as it does not consider the
differences in qualifications between demographic groups. It is essential to carefully
select and apply fairness metrics that are appropriate for the specific context and goals
of a given AI system or algorithm.

4 Maximizing Marginal Utility Given Demographic

Parity Constraint

To maximize marginal utility with a demographic parity constraint, we set up a utility
function and introduce a Lagrange multiplier to incorporate the constraint.

Let’s denote utility as U(x, y) where x and y represent the inputs or features of two
demographic groups A and B.

Demographic parity constraint states that the selection rates for each group should be
the same, which can be expressed as:

P (decision = 1|group = A) = P (decision = 1|group = B) (2)

Let’s assume that the decision boundaries for both groups can be represented by linear
equations:

fA(x) = ax+ b (3)

fB(y) = cy + d (4)

Let PA = P (decision = 1 | group = A) and PB = P (decision = 1 | group = B).

Then, the Lagrangian L can be written as:

L (x, y, λ) = U(x, y)− λ(PA − PB) (5)
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Now we need to take the partial derivatives with respect to x, y and λ and set them to
zero:

∂L

∂x
=

∂U

∂x
− λ∂(P (decision = 1|group = A))

∂x
= 0 (6)

∂L

∂y
=

∂U

∂y
− λ∂(P (decision = 1|group = A))

∂y
= 0 (7)

∂L

∂λ
= P (decision = 1|group = A)− P (decision = 1|group = B) = 0 (8)

These equations form a system of nonlinear equations which can be solved for x, y,
and λ. Solving for these variables will provide the optimal allocation that maximizes
utility under the demographic parity constraint. Keep in mind that finding an explicit
solution may be challenging or impossible for more complex utility functions or decision
boundaries. In such cases, numerical optimization methods, like gradient descent, can
be employed.

5 Demographic Parity vs. Pareto Efficiency

Kearns et al. (2018) explore the concept of subgroup fairness in machine learning
algorithms and discuss the trade-offs between fairness, utility, and Pareto efficiency in
the context of fairness constraints. The authors suggest various techniques for auditing
and learning subgroup fairness while taking into account multiple fairness metrics such
as demographic parity, ultimately aiming to achieve a balance between fairness and
efficiency (Kearns et al., 2018).

Let’s consider a simple hypothetical example with two demographic groups, A and B.
Suppose we have a limited number of resources (e.g., job positions) that we need to
allocate to these groups.

Let x be the proportion of resources allocated to group A and (1− x) be the propor-
tion allocated to group B. For simplicity, let’s assume that the utility derived from
allocating resources to each group is given by:

UA(x) = ax (9)

UB(x) = b(1− x) (10)

where a and b are the constants representing the marginal utilities per unit of resource
for groups A and B, respectively.

Under demographic parity, we want to equalize the proportion of resources allocated
to both groups.

x = 1− x (11)

Solving for x, we find that x = 0.5. This means that we would allocate 50% of the
resources to group A and the remaining 50% to group B to achieve demographic parity.

Now, let’s consider Pareto efficiency. To achieve Pareto efficiency, we want to maximize
the total utility without making any individual worse off. In this case, we want to
maximize the sum of the utilities for both groups:

UTotal(x) = UA(x) + UB(x) = UB(x) = ax+ b(1− x) (12)
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To find the optimal resource allocation that maximizes UTotal, we can find the critical
points by taking the derivative of UTotal with respect to x and setting it equal to zero:

∂UTotal

∂x
= a− b = 0 (13)

Solving for a and b, we find that a = b.

However, in many real-world scenarios, it is unlikely that a = b, as the marginal utilities
for different demographic groups may not be equal. In such cases, allocating resources
based on demographic parity (x = 0.5) would not result in Pareto efficiency, as the
total utility could be increased by reallocating resources from the group with lower
marginal utility to the group with higher marginal utility.

This example illustrates that achieving demographic parity does not guarantee Pareto
efficiency, a state where no individual’s utility can be improved without worsening an-
other’s, emphasizing optimal resource allocation without harm to any party. In prac-
tice, the relationship between demographic parity and Pareto efficiency can be more
complex due to various factors, such as different utility functions or additional con-
straints. Nonetheless, the example highlights the potential trade-offs between fairness
and efficiency in decision-making processes.

6 Conclusion

This paper has examined the multifaceted nature of algorithmic bias and its implica-
tions in machine learning systems, focusing on the critical need for fairness metrics
such as demographic parity, equalized odds, and equal opportunity. Through a series
of examples and theoretical discussions, we have highlighted how biases in algorithms
can disproportionately impact different demographic groups, leading to unfair decision
outcomes.

The exploration into fairness metrics emphasizes their essential role in creating more
equitable AI systems. However, we also recognize that achieving absolute fairness is
complex and often involves trade-offs, such as those between demographic parity and
Pareto efficiency. This complexity is evident in our discussions on maximizing utility
under fairness constraints, where demographic parity can conflict with optimal resource
allocation.

Furthermore, the paper suggests that while demographic parity aims to equalize out-
comes across groups without regard to individual qualifications, it may not always
result in fair or efficient outcomes. This calls for a nuanced approach to implementing
fairness metrics, considering the specific contexts and goals of each AI system.

Future work in this field should continue to refine these metrics and explore new meth-
ods for mitigating bias, with an emphasis on practical applications and the development
of tools for auditing and adjusting algorithms in real-world scenarios. By advancing
our understanding and technology in this area, we can better ensure that AI systems
perform justly across all segments of society, truly supporting the ideals of equity and
fairness.

In conclusion, while significant strides have been made in understanding and address-
ing algorithmic bias, the journey towards truly fair AI systems is ongoing. It is a
collective challenge that requires continuous effort from researchers, practitioners, and
policymakers alike.
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