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Abstract

The city of San Diego has become reliant upon a streets Overall Condition Index (OCI) that was designed
and implemented by the United States Army Corps of Engineers. The company will provide
recommendations to implement cost savings solutions.

Problem Statement

The city of San Diego has decided to "spend $700,000 to survey the condition of every street in
the city so repairs and upgrades can be geared toward increasing social equity, fixing many
long-neglected roads and boosting opportunities for bicycling" (Garrick, 2021). The challenge is to identify
viable targets (streets) for future infrastructure projects for the city of San Diego. A high caliber consulting
service that our company provides is instrumental for handling the following task. Classification of streets
in above par conditions is a crucial step in establishing project feasibility. The city's future depends on it.

Goals

1. Predictive Analytics: Predict street viability presence/likelihood (good/fair vs. poor)
2. Prescriptive Analytics: Identify cost effective solution to expand infrastructure projects
3. Informative: Inform City of San Diego of the outcome in a timely manner (by 5/18/2022)

Non-Goals

While we will endeavor to provide recommendations and viable solutions that hinge on sound and
proper data analytics, it is not in our capacity to “fix” issues including but not limited to traffic, parking
meters, or real-estate assets or valuation.

Data Sources

Data will be stored on AWS service S3 Bucket that will communicate with AWS Sagemaker. The
three files will be uploaded to S3 bucket.

● Streets Overall Condition Index (OCI): CSV file 30,712 entries and 12 columns
https://data.sandiego.gov/datasets/streets-overall-condition-index/

● Street Repair Projects: CSV file with 23,433 entries and 19 columns
https://data.sandiego.gov/datasets/streets-repair-projects/

● Traffic Volumes: CSV file with 12,432 entries and 10 columns
https://data.sandiego.gov/datasets/traffic-volumes/
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Data Exploration

An S3 bucket is created in which a parent folder directory “raw_files” has three separate folders
for each respective CSV file. The data is stored in an S3 Bucket that will communicate with AWS
Sagemaker visa vie AWS Athena, a serverless “interactive query service that makes it easy to analyze
data in Amazon S3 using standard SQL” (Amazon Web Services, n.d.) to create the database and
combine the three files into one single dataframe df.

Exploratory Data Analysis (EDA)

During the exploration phase, column names, data types, missing values, and size/shape of the
dataset are initially documented in a new cell block. There are a total of 28 columns (features) and 23,005
rows that are a combination of floating point numbers, objects, and integers. Information on whether or
not each respective column contains any null or missing values is represented herein. At this stage,
missing values are uncovered in date_moratorium (4,426), date_start (1), date_end (7), street_name
(16,874), and total_count (16,874), respectively.

Summary Statistics and Outlier Detection

Table 1 shows the summary statistics of the target variable, overall street condition.

Table 1

Overall Condition Index (OCI) Summary

Count Mean Std Min 25% 50% 75% Max

23,005 74.79141 16.78405 0 66.3 79.06 87.3 100

Note. The mean is lower than the median, suggesting a negatively skewed distribution on the target
variable.

Whereas the low (Q1 - 1.5*(IQR)) and high (Q3 + 1.5(IQR)) outliers are found to be 34.8 and 118.8,
respectively, omitting these does not benefit long-term project goals. Resistance versus sensitivity to
outliers in this endeavor is part and parcel of further analysis.

Data Ingestion

SQL by way of Athena (PyAthena) is used to ingest the data and Pandas is used to read in the
SQL queries visa vie the “pd.read_sql()” function. More broadly, the Pandas library is used to read-in and
explore the dataframe(s), while matplotlib and seaborn are used for visual explorations (graphical
endeavors).  An additional helper tool for table visualization (PrettyTable) is leveraged for supplementary
visual appeal.

GitHub Repository Information

Main notebook (.ipynb file): https://github.com/lshpaner/sd_streets/blob/main/sd_streets.ipynb
Main notebook (.pdf file): https://github.com/lshpaner/sd_streets/blob/main/sd_streets.pdf
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Master Link to main repository: https://github.com/lshpaner/sd_streets

Moreover, histograms of all of the numeric features on the joined dataframe are produced to
establish or detect the presence of degenerate distributions. One accompanying boxplot examining
streets’ overall condition index (OCI) is presented visually, but illustrates the same behavior (summary
statistics) that has already been depicted in Table 1. Figure 1 shows distributions of all of the numerical
features from the entire dataset.

Figure 1

Histogram Distributions

Note. Area in square feet, length, paving miles, and segment length in feet all exhibit right-skewed
distributions. The OCI categorical feature is negatively skewed where there is a class imbalance between
the 0 and 1 classes, respectively. This is supported by the ensuing Bias Exploration section.

Notwithstanding, all accompanying proportional measurements (i.e., height, width, length, etc.) are true
and proper records acquired by the city of San Diego. No immediate transformation (normalization or
standardization) is required in order to avoid the potential adverse effect of a high bias, low variance
model whereby “a higher bias would not match the data set closely” (Wickramasinghe, 2021).

Pavement identification and total count are of no value and should thus be removed from the dataset.
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Bias Exploration

Bias exploration helps determine the extent and/or effect of imbalance data by looking at the
target feature of Overall Street Condition Index Description (oci_desc) which provides information on the
street quality with “good”, “fair,” and “poor” conditions, respectively. This effect is measured both
numerically and represented visually on a bar graph. There are a total of 23,005 streets of which 6,105
streets are in fair condition, 15,758 streets in good condition, and 1,142 streets in poor condition. Figure 2
shows this categorical distribution in the accompanying bar graph.

Figure 2

Bar Graph of San Diego Street Conditions

Whereas a method can be used to classify street conditions into multiple classes, it is easier to re-classify
streets in “fair” and “good” condition into one category in comparison with the poor class. This, in turn,
becomes a binary classification problem. Thus, there are now 21,863 streets in good condition and 1,142
in poor condition (only 5% of all streets). This presents a definitive example of class imbalance.

Class Imbalance

Multiple methods for balancing a dataset exist like “undersampling the majority classes” (Fregly &
Barth, 2021, p. 178). To account for the large gap (95%) of mis-classed data on the “poor” condition class,
“oversampling the minority class up to the majority class” (p. 179) is commenced. However, such
endeavor cannot proceed in good faith without the unsupervised dimensionality reduction technique of
Principal Component Analysis (PCA), which is carried out “to compact the dataset and eliminate irrelevant
features” (Naseriparsa & Kashani, 2014, p. 33).

In this case, a new dataframe is reduced down into the first two principal components since the
largest percent variance explained exists therein and because these principal components are depicted
on the ensuing two-dimensional (x,y) scatter plot in Figure 3. A two-dimensional analysis is the most
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parsimonious one for illustrating additional visual confirmation of a class imbalance. The two classes are
represented by light blue and pinkish red colors, of which the latter captures a larger number of. In other
words, streets in good condition encapsulate a larger percentage of data than streets in poor condition.

Figure 3

Class Imbalance in Streets’ Overall Condition

One final exploratory data analysis undertaking yields a triangular correlation matrix, an important
step for examining the relationship between predictor variables and determining multicollinearity based on
a threshold of a pearson correlation coefficient r = 0.75. Based on this criteria, area in square feet, oci
weight, length, width, and paving miles are columns that are earmarked for subsequent removal because
length multiplied by width equals to area in square feet. Paving miles is the same information represented
on another measurement scale.  This is further discussed in the pre-processing section.

Measuring Impact

It is expected that the “good,” “fair,” and “poor” street condition classes being cast to dummy
variables may slightly over-generalize street conditions by placing more emphasis on poorer conditions,
specifically within the target variable. To this end, these three variables are narrowed down to two
whereby a binary classification follows suit (i.e., good condition vs. poor condition (0,1)). Provided that
certain machine learning methods and models have the ability to extract predicted probabilities, this will
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allow for a new column with such metrics to be feature engineered at the culmination of predictive
modeling.

Security Checklist, Privacy and Other Risks

● No PHI, PII, user behavior, nor credit card data will be stored or processed since the information
presented/provided herein is a matter of public record.

● This application will read/write to the following public s3 bucket: s3://waterteam1/raw_files/

● Bias by way of class imbalance is considered and addressed in order to assuage the potential
effects of overfitting some or all of the machine learning methods/models that will be explored.
Re-balancing the classes where an imbalance exists by oversampling or undersampling is one
method of addressing this roadblock.

● One ethical concern that should be addressed is overfitting/underfitting the data commensurate
with the initial notions of the viability/efficacy of the dataset at large.

Data Preparation and Data Scrubbing visa vie Pre-Processing

Date_start and date_end are subsequently removed after being concatenated into one uniform
feature (date_days). Total count and street name represent the same information, and are unimportant
features that are dropped from the dataframe altogether. Moreover, any duplicate columns are removed
from the dataframe at large; this is an extra measure for avoiding post-join feature redundancy.

Predictive models only work with numerical values; therefore, categorical features such as
func_class (function class), pvm_class (pavement class), and status are transformed into numerical
values by mapping dictionaries of categorical values in ascending order. Creation of dummy variables is
supported by the following information. For example, in the function class feature, the residential,
collector, major, prime, local, and alley functional classes are converted to categorical values (1-6).
Similarly, in the pavement class feature, AC Improved, PCC Jointed Concrete, AC Unimproved, and
unsurfaced pavement classes are converted to values ranging from one to four.

Lastly, the current status of the job (i.e., post construction, design, bid/award, construction, and
planning) is converted to categorical values between one and five. Features with no additional value are
removed. Columns with explicit titles (i.e., names) and non-convertible/non-meaningful strings are
dropped. Redundant columns (columns that have been cast to dummy variables) are dropped in
conjunction with the index column which holds no value in this work.

For context and clarification columns with identifying information that are dropped include the
project id, pavement event id, segment id, and project title. Additionally, the project manager’s email and
phone number are removed to protect sensitive information in accordance with strict compliance
standards; moreover, this information cannot be ingested into a viable machine learning algorithm.

Balancing the Dataset

The adaptive synthetic sampling approach (ADAYSN) is used because this is  “where more
synthetic data is generated for minority class examples that are harder to learn compared to those
minority examples that are easier to learn” (He et al., 2008). This allows for the minority class to be more
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closely matched (re-sampled) to the majority class for an approximately even 50/50 weight distribution.
This results in a larger dataset. Whereas previously there were 23,005 rows, there are now 43,572 (seven
rows were previously dropped because of null values).

Train, Test, Validation Splits

To avoid overfitting, the main dataset is split into three respective component parts (dataframes),
which will work to train, test, and validate the final model (Solawetz, 2020). Using sci-kit learn, the split is
divided by 70%, 15%, and 15%, translating to 30,500 training rows, and 6,536 validation and test rows,
respectively. Whereas specifying a stratify parameter allows the split function “to choose any data in the
given dataset, causing the splits to become unbalanced” (Fregly & Barth, 2021, p. 181), a random state is
set to 777 to ensure reproducible results.

Data Training and Modeling (Classical Approach)

The following experiment has two parts, first of which is conducted using a classical Logistic
Regression model-based approach via scikit-learn. Logistic Regression is a viable algorithm for predicting
target features that are categorical and with binary outcomes. To this end, the Logistic Regression
function is imported directly from the sci-kit learn library, subsequently called, and fitted to the training
portion with no hyperparameters other than the random state of 777 for reproducibility. Albeit, discussing
performance at this juncture appears to be premature, it is important to note the following. With each
iteration of restarting the kernel and running all cells, the accuracy score changes despite a solidified
random state on the split data and model itself. Accuracy scores range in a broader-than-expected range
of values in the 90th percentile. Modeling data in this way is similar to a “bring-your-own-script” scenario,
but it has its limitations in reproducibility. Therefore, likening SageMaker to merely a Jupyter Notebook on
the cloud minimizes its efficacy, power, and purpose.

Hyperparameters

To mitigate the classically trained Logistic Regression model, a randomized search is carried out
in accordance with a k-fold cross validation of two repeats and five sample splits. A model search space
is defined in terms of log uniform values between 1e-5 and 100 and set in conjunction with newton-cg,
lbfgs, liblinear solvers, and l1, l2, and elasticnet penalty scoring mechanisms. The number of jobs is set to
-1 in order to utilize all of the processing power, parallelizing the cpu usage over 100% of the cores.
While accuracy is the predominant scoring criterion in this endeavor, it is only used to establish how often
the predictive model is correct given the true positive and true negative scores, divided by the total. If it is
higher than the original score, then this score is reproducible provided that the same random state and
optimal hyperparameters displayed by the model are used. Precision, recall, and f1-scores are still
considered by the final output since they are essential performance assessment scores necessary for a
thorough, proper, and holistic model evaluation.

Data Training on Refined Algorithm Conducive to a Cloud-Centric Environment

Consequently, SageMaker’s built-in XGBoost algorithm is used because it is conducive to sound
and proper cloud computing practices within the AWS ecosystem. Moreover, it is an “implementation of
gradient boosted decision trees designed for speed and performance” (Brownlee, 2021). To begin the
process, an Identity Access Management (IAM) role, region name, and XGboost container are defined. It
is important to note that whereas the data has already been split into train, validation, and test sets, this is
carried out in accordance with sklearn’s classic Logistic Regression model most suitable to an
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Anaconda-based coding environment. However, for this rendition of modeling and experimentation, the
final dataframe df2 is once again split, but this time into train (70%) and test (30%) sets only, since model
prediction and evaluation has been de-prioritized by the requirements (size and scope) of the project
manager. The training data is subsequently transferred into the S3 bucket for storage and retrieval such
that it can be called upon for repeated and/or supplemented endeavors.

Parameters

Furthermore, a SageMaker estimator is called upon and passed to an XGBoost variable. Inside
the estimator function, the XGBoost container, role, instance count, type, and output path are parsed in.

Instance Size and Count

An instance count is the “number of Amazon EC2 instances to use for training” (Amazon
SageMaker Python SDK, n.d.). In this experiment, an instance count of one is used. The instance type,
on the other hand, is the “EC2 instance type to deploy this Model to” (SageMaker Python SDK, n.d.). In
this case, the instance type is set to ml.m5.large, which is justified by a balanced two VPCUs, eight
gigabyte memory, and a cost of only $0.115 per hour (AWS, n.d.). This is more than an adequate solution
for a project of this scale and magnitude.

Model Evaluation

Whereas various performance metrics exist to assist in the holistic process of model evaluation,
an accuracy score alone cannot provide a qualitative assessment of model performance, let alone
predictive ability. Regardless, accuracy (~90%) is used in conjunction with precision (86%), recall (94%),
and f1-score (90%), respectively to shed light on the baseline Logistic Regression performance (first
modeling endeavor). These numbers are relatively high, which supports the idea or notion that the model
can be used with a different dataset. That being said, since these metrics are not reproducible at a
random state of 777, this endeavor does not lend itself to one of repeatability.

Therefore, performance assessment must be relegated to an accuracy score and confusion
matrix from SageMaker’s built-in XGBoost model. Granted, these are minimal assessments at best, it is
discovered that a classification rate of 100% does not provide the necessary framework to move forward
with actionable recommendations on street condition classification for the city of San Diego. However, the
model has room for improvement and can be re-trained and re-sampled.

Future Enhancements

Enhancement #1: Standardizing/Normalizing The Data

Standardization and normalization techniques are common strategies to improve the performance
metrics of predictive models. These techniques are not required on each feature but are very useful when
the features have different ranges (Jaitley, 2018). The difference between these two techniques is that
normalization rescales the value range from 0 to 1, and standardization rescales the data with a mean
equal to zero and a standard deviation of one (Geller, 2019). Additionally, standardization techniques
assume a Gaussian distribution in the data, while normalization does not (Lakshmanan, 2019). Therefore,
having used these strategies in certain numeric features (i.e., area in square feet and OCI description)
could potentially improve the quality of the analysis. However, this remains to be seen in a forthcoming
examination of this procedure.
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Going back to the pre-processing, the histogram of the feature “area_sq_ft” shows a skewed
distribution to the right, meaning that there are outliers present in the data. Eliminating these outliers
could negatively impact the modeling since data would be lost. To mitigate the problem, standardization or
normalization techniques could be applied to optimize the results of the final model without losing any
data.

Enhancement #2: Different Algorithms and Tuning Mechanisms

Though it is clear that choosing a machine learning algorithm suitable for a classification task
such as the one presented in this project is a great choice, elaborating on the significance of the choices
prior to making them would have potentially benefited the outcome. For example, using XGBoost simply
because it was readily available, accessible, and deliverable from a list of SageMaker’s built-in algorithms
does not consider the need for modeling depth. To this end, understanding the classification problem at
hand requires an expanded viewpoint, one that is rich with hyperparameter justifications and clarification
on ensemble methods holistically.

It is hereby proposed that the Random Forest model be explored on a subsequent iteration of this
project because this model because XGBoost places a larger emphasis on functional space, while the
Random Forest classifier “tries to give more preferences to hyperparameters to optimize the model”
(Gupta, 2021). When subtracting out the start date from the end date to achieve a total difference in days,
it is discovered that there are 18,451 rows with no difference in project duration (zero days), which
translates to approximately 80% of the data with immaterial values. Learning from this kind of sparsity
would be better if the dataset remained unbalanced for the XGBoost model, but the Random Forest
classifier may be a better choice because its hyperparameters are easier to tune and it can “easily adapt
to distributed computing than Boosting algorithms” (Gupta, 2021).

Furthermore, an effort can be made to optimize the model with hyperparameters including but not
limited to specifying the epochs, which are “the number of passes of the entire training dataset the
machine learning algorithm has completed” (Bell, 2020). SageMaker HPT is more than capable of
handling this workload since “it supports automatic HPT across multiple algorithms by adding a list of
algorithms to the tuning job definition” (Fregly & Barth, 2021, p. 284).

Enhancement #3: Additional Features

Feature selection can impact bias and variance depending on the complexity of the model.
Adding new features when the dataset is not big enough will work well on small datasets (El Deeb, 2015).
The current dataset has enough observations to increase the number of features. Even if many features
were eliminated from the tables, there is an opportunity to explore other datasets that can be merged into
the current dataset to improve the overall quality of the final model and recommendations.

The final data set in this analysis consisted of ten features, but additional information such as car
and pedestrian traffic can be added to the model. These features are not only helping the modeling part
but are adding value to the recommendations that will be provided to the stakeholders. Prioritizing street
enhancement by traffic might be in the best interest of the customer to allocate the resources that will
impact the population of the city of San Diego. For example, the 24 hour total of all directions of vehicles
combined (traffic count) can be reconsidered in the following formula:

Traffic Volume = Total Count ✕ Area in Square Feet
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To determine the traffic volume, the total count is multiplied by the area in square feet. The 16,874
missing values should be imputed with a value of one such that upon multiplication of the two features, at
least the total count would remain in the calculation of volume, whereas imputing with zero would render
traffic volume in this new column unreported and immaterial.

Enhancement #4: Infrastructure Amendment Considerations

An S3 bucket on Amazon Web Services has proven to be a viable storage medium for this
project. Moreover, future considerations for storage should keep scalability in mind; this simple storage
service “is the largest and most performant object storage service for structured and unstructured data
and the storage service of choice to build a data lake” (AWS, n.d.). In the same vein, future
considerations will be given to scaling up to a data warehouse, with the following advantages in mind. For
example, “tables can be organized inside of schemas, which you can think of as folders. When data is
ingested, it is stored in various tables described by the schema. Query tools use the schema to determine
which data tables to access and analyze” (AWS, n.d.).
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Appendix - San Diego Street Conditions Classification
A Cloud Computing Project by Leonid Shpaner, Jose Luis Estrada, and Kiran Singh

[1]: import boto3, re, sys, math, json, os, sagemaker, urllib.request
import io
import sagemaker
from sagemaker import get_execution_role
from IPython.display import Image
from IPython.display import display
from time import gmtime, strftime
from sagemaker.predictor import csv_serializer
from pyathena import connect
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from prettytable import PrettyTable
from imblearn.over_sampling import SMOTE, ADASYN
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split, \
RepeatedStratifiedKFold, RandomizedSearchCV
from sklearn.metrics import roc_curve, auc, mean_squared_error,\
precision_score, recall_score, f1_score, accuracy_score,\
confusion_matrix, plot_confusion_matrix, classification_report
from sagemaker.tuner import HyperparameterTuner
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from scipy.stats import loguniform
import warnings
warnings.filterwarnings('ignore')

Data Wrangling

[2]: # create athena database
sess = sagemaker.Session()
bucket = sess.default_bucket()
role = sagemaker.get_execution_role()
region = boto3.Session().region_name
# s3 = boto3.Session().client(service_name="s3", region_name=region)

# ec2 = boto3.Session().client(service_name="ec2", region_name=region)
# sm = boto3.Session().client(service_name="sagemaker", region_name=region)

[3]: ingest_create_athena_db_passed = False

[4]: # set a database name
database_name = "watersd"

[5]: # Set S3 staging directory -- this is a temporary directory used for Athena queries
s3_staging_dir = "s3://{0}/athena/staging".format(bucket)
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[6]: conn = connect(region_name=region, s3_staging_dir=s3_staging_dir)

[7]: statement = "CREATE DATABASE IF NOT EXISTS {}".format(database_name)
print(statement)
pd.read_sql(statement, conn)

CREATE DATABASE IF NOT EXISTS watersd

[7]: Empty DataFrame
Columns: []
Index: []

[8]: water_dir = 's3://waterteam1/raw_files'

[9]: # SQL statement to execute the analyte tests drinking water table

table_name ='oci_2015_datasd'
pd.read_sql(f'DROP TABLE IF EXISTS {database_name}.{table_name}', conn)

create_table = f"""
CREATE EXTERNAL TABLE IF NOT EXISTS {database_name}.{table_name}(

seg_id string,
oci float,
street string,
street_from string,
street_to string,
seg_length_ft float,
seg_width_ft float,
func_class string,
pvm_class string,
area_sq_ft float,
oci_desc string,
oci_wt float
)

ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LOCATION '{water_dir}/{table_name}'
TBLPROPERTIES ('skip.header.line.count'='1')

"""

pd.read_sql(create_table, conn)

pd.read_sql(f'SELECT * FROM {database_name}.{table_name} LIMIT 5', conn)

[9]: seg_id oci street street_from street_to seg_length_ft seg_width_ft \
0 SA-000003 65.14 ALLEY 772.7258 30.0
1 SA-000004 67.45 ALLEY 196.0025 30.0
2 SA-000005 70.88 ALLEY 395.0049 30.0
3 SA-000006 84.00 ALLEY 192.0025 30.0
4 SA-000008 79.24 ALLEY 251.7540 30.0
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func_class pvm_class area_sq_ft oci_desc oci_wt
0 Alley PCC Jointed Concrete 23181.773 Fair 1510060.80
1 Alley PCC Jointed Concrete 5880.075 Fair 396611.06
2 Alley PCC Jointed Concrete 11850.147 Good 839938.44
3 Alley PCC Jointed Concrete 5760.075 Good 483846.30
4 Alley PCC Jointed Concrete 7552.620 Good 598469.60

[10]: # SQL statement to execute the analyte tests drinking water table

table_name2 ='sd_paving_datasd'
pd.read_sql(f'DROP TABLE IF EXISTS {database_name}.{table_name2}', conn)

create_table = f"""
CREATE EXTERNAL TABLE IF NOT EXISTS {database_name}.{table_name2}(

pve_id int,
seg_id string,
project_id string,
title string,
project_manager string,
project_manager_phone string,
status string,
type string,
resident_engineer string,
address_street string,
street_from string,
street_to string,
seg_cd int,
length int,
width int,
date_moratorium date,
date_start date,
date_end date,
paving_miles float
)

ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LOCATION '{water_dir}/{table_name2}'
TBLPROPERTIES ('skip.header.line.count'='1')

"""

pd.read_sql(create_table, conn)

pd.read_sql(f'SELECT * FROM {database_name}.{table_name2} LIMIT 5', conn)

[10]: pve_id seg_id project_id title \
0 1073577074 SA-000319 UTLY Public Works CIP
1 1792486183 SA-000345 UTLY Public Works CIP
2 1173780646 SA-000375 UTLY Public Works CIP
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3 1276790298 SA-000378 UTLY Public Works CIP
4 27170959 SA-001081 UTLY Public Works CIP

project_manager project_manager_phone status \
0 Engineering@sandiego.gov 858-627-3200 post construction
1 Engineering@sandiego.gov 858-627-3200 post construction
2 Engineering@sandiego.gov 858-627-3200 post construction
3 Engineering@sandiego.gov 858-627-3200 post construction
4 Engineering@sandiego.gov 858-627-3200 post construction

type resident_engineer address_street street_from street_to seg_cd \
0 Overlay ECP ALLEY 2
1 Slurry ECP ALLEY 2
2 Slurry ECP ALLEY 2
3 Slurry ECP ALLEY 2
4 Concrete ECP ALLEY 9

length width date_moratorium date_start date_end paving_miles
0 0 NaN 2019-02-02 2019-02-02 2019-02-02 0.000000
1 938 30.0 2019-01-30 2019-01-30 2019-01-30 0.177652
2 674 30.0 2018-08-01 2018-08-01 2018-08-01 0.127652
3 658 30.0 2018-08-01 2018-08-01 2018-08-01 0.124621
4 680 30.0 None 2020-08-13 2020-08-13 0.128788

[11]: # SQL statement to execute the analyte tests drinking water table

table_name3 ='traffic_counts_datasd'
pd.read_sql(f'DROP TABLE IF EXISTS {database_name}.{table_name3}', conn)

create_table = f"""
CREATE EXTERNAL TABLE IF NOT EXISTS {database_name}.{table_name3}(

id string,
street_name string,
limits string,
northbound_count int,
southbound_count int,
eastbound_count int,
westbound_count int,
total_count int,
file_no string,
date_count date
)

ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LOCATION '{water_dir}/{table_name3}'
TBLPROPERTIES ('skip.header.line.count'='1')

"""

pd.read_sql(create_table, conn)
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pd.read_sql(f'SELECT * FROM {database_name}.{table_name3} LIMIT 5', conn)

[11]: id street_name limits northbound_count \
0 01AV018207 01 AV A ST - ASH ST 18010
1 01AV015210 01 AV A ST - ASH ST 20060
2 01AV018213 01 AV A ST - ASH ST 19597
3 01AV007721 01 AV A ST - ASH ST 10640
4 01AV088812 01 AV ASH ST - BEECH ST 2298

southbound_count eastbound_count westbound_count total_count file_no \
0 None None None 18010 0182-07
1 None None None 20060 0152-10
2 None None None 19597 0182-13
3 None None None 10640 0077-21
4 None None None 2298 0888-12

date_count
0 2007-03-13
1 2010-03-18
2 2013-03-12
3 2021-03-10
4 2012-12-11

[12]: statement = "SHOW DATABASES"
df_show = pd.read_sql(statement, conn)
df_show.head(5)

[12]: database_name
0 default
1 dsoaws
2 watersd

[13]: if database_name in df_show.values:
ingest_create_athena_db_passed = True

[14]: %store ingest_create_athena_db_passed

Stored 'ingest_create_athena_db_passed' (bool)

[15]: pd.read_sql(f'SELECT * FROM {database_name}.{table_name} t1 INNER JOIN \
{database_name}.{table_name2} t2 ON t1.seg_id \
= t2.seg_id LIMIT 5', conn)

[15]: seg_id oci street street_from street_to seg_length_ft \
0 SA-000345 34.14 ALLEY 937.9261
1 SA-000375 97.25 ALLEY 673.3209
2 SA-000378 62.67 ALLEY 657.2000
3 SA-001081 68.86 ALLEY 679.1060
4 SA-001083 28.67 ALLEY 660.0917

seg_width_ft func_class pvm_class area_sq_ft … \
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0 30.0 Alley AC Improved 28137.783 …
1 30.0 Alley PCC Jointed Concrete 20199.627 …
2 30.0 Alley PCC Jointed Concrete 19716.000 …
3 30.0 Alley PCC Jointed Concrete 20373.180 …
4 30.0 Alley PCC Jointed Concrete 19802.752 …

address_street street_from street_to seg_cd length width date_moratorium \
0 ALLEY 2 938 30 2019-01-30
1 ALLEY 2 674 30 2018-08-01
2 ALLEY 2 658 30 2018-08-01
3 ALLEY 9 680 30 None
4 ALLEY 9 661 30 None

date_start date_end paving_miles
0 2019-01-30 2019-01-30 0.177652
1 2018-08-01 2018-08-01 0.127652
2 2018-08-01 2018-08-01 0.124621
3 2020-08-13 2020-08-13 0.128788
4 2020-07-31 2020-07-31 0.125189

[5 rows x 31 columns]

[16]: df = pd.read_sql(f'SELECT * FROM (SELECT * FROM {database_name}.{table_name} \
t1 INNER JOIN {database_name}.{table_name2} t2 \
ON t1.seg_id = t2.seg_id) m1 LEFT JOIN (SELECT street_name,␣

↪→\
SUM(total_count)␣

↪→total_count \
FROM␣

↪→{database_name}.{table_name3} \
GROUP BY␣

↪→street_name) t3 \
ON m1.address_street = t3.street_name', conn)

[17]: df.head(5)

[17]: seg_id oci street street_from street_to seg_length_ft seg_width_ft \
0 SA-000345 34.14 ALLEY 937.9261 30.0
1 SA-000375 97.25 ALLEY 673.3209 30.0
2 SA-000378 62.67 ALLEY 657.2000 30.0
3 SA-001081 68.86 ALLEY 679.1060 30.0
4 SA-001083 28.67 ALLEY 660.0917 30.0

func_class pvm_class area_sq_ft … street_to seg_cd length \
0 Alley AC Improved 28137.783 … 2 938
1 Alley PCC Jointed Concrete 20199.627 … 2 674
2 Alley PCC Jointed Concrete 19716.000 … 2 658
3 Alley PCC Jointed Concrete 20373.180 … 9 680
4 Alley PCC Jointed Concrete 19802.752 … 9 661

width date_moratorium date_start date_end paving_miles street_name \
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0 30 2019-01-30 2019-01-30 2019-01-30 0.177652 None
1 30 2018-08-01 2018-08-01 2018-08-01 0.127652 None
2 30 2018-08-01 2018-08-01 2018-08-01 0.124621 None
3 30 None 2020-08-13 2020-08-13 0.128788 None
4 30 None 2020-07-31 2020-07-31 0.125189 None

total_count
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN

[5 rows x 33 columns]

[18]: # remove duplicated columns
df = df.loc[:,~df.columns.duplicated()]

[19]: # create flat .csv file from originally
# merged dataframe
# df.to_csv('original_merge.csv')

Exploratory Data Analysis (EDA)

[20]: # get number of rows and columns
print('Number of Rows:', df.shape[0])
print('Number of Columns:', df.shape[1], '\n')

# inspect datatypes and nulls
data_types = df.dtypes
data_types = pd.DataFrame(data_types)
data_types = data_types.assign(Null_Values =

df.isnull().sum())
data_types.reset_index(inplace = True)
data_types.rename(columns={0:'Data Type',

'index': 'Column/Variable',
'Null_Values': "# of Nulls"})

Number of Rows: 23005
Number of Columns: 30

[20]: Column/Variable Data Type # of Nulls
0 seg_id object 0
1 oci float64 0
2 street object 0
3 street_from object 0
4 street_to object 0
5 seg_length_ft float64 0
6 seg_width_ft float64 0
7 func_class object 0
8 pvm_class object 0
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9 area_sq_ft float64 0
10 oci_desc object 0
11 oci_wt float64 0
12 pve_id int64 0
13 project_id object 0
14 title object 0
15 project_manager object 0
16 project_manager_phone object 0
17 status object 0
18 type object 0
19 resident_engineer object 0
20 address_street object 0
21 seg_cd int64 0
22 length int64 0
23 width int64 0
24 date_moratorium object 4426
25 date_start object 1
26 date_end object 7
27 paving_miles float64 0
28 street_name object 16874
29 total_count float64 16874

Bias Exploration

To explore potential areas of bias, we will endeavor to trace class imbalance on the target feature of
“oci_desc.”

[21]: oci_desc_fair = df['oci_desc'].value_counts()['Fair']
oci_desc_good = df['oci_desc'].value_counts()['Good']
oci_desc_poor = df['oci_desc'].value_counts()['Poor']
oci_desc_total = oci_desc_fair + oci_desc_good + oci_desc_poor

table1 = PrettyTable() # build a table
table1.field_names = ['Fair Condition', 'Good Condition',

'Poor Condition', 'Total']
table1.add_row([oci_desc_fair, oci_desc_good, oci_desc_poor,

oci_desc_total])
table1

[21]: +----------------+----------------+----------------+-------+
| Fair Condition | Good Condition | Poor Condition | Total |
+----------------+----------------+----------------+-------+
| 6105 | 15758 | 1142 | 23005 |
+----------------+----------------+----------------+-------+

[22]: perc_good = oci_desc_good /(oci_desc_total)
perc_fair = oci_desc_fair /(oci_desc_total)
perc_poor = oci_desc_poor /(oci_desc_total)
print(round(perc_good, 2)*100, '% of streets '

'are in good condition ')
print(round(perc_fair, 2)*100, '% of streets '

'are in fair condition ')
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print(round(perc_poor, 2)*100, '% of streets '
'are in poor condition ')

68.0 % of streets are in good condition
27.0 % of streets are in fair condition
5.0 % of streets are in poor condition

Considerably more than half of the streets are in good condition. A little less than a third are in fair
condition. Only 5% are in poor condition.

[23]: # accidents injury bar graph
conditions = df['oci_desc'].value_counts()
fig = plt.figure()
conditions.plot.bar(x ='lab', y='val', rot=0, width=0.99,

color="steelblue")
plt.title ('Bar Graph of San Diego Street Conditions')
plt.xlabel('Condition')
plt.ylabel('Count')
plt.show()

conditions

[23]: Good 15758
Fair 6105
Poor 1142
Name: oci_desc, dtype: int64

Whereas a method can be used to classify street conditions into multiple classes, it is easier to re-classify
streets in “fair” and “good” condition into one category in comparison with the poor class. This, in turn,
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becomes a binary classification problem. Thus, there are now 21,863 streets in good condition and 1,142 in
poor condition (only 5% of all streets). This presents a definitive example of class imbalance.

[24]: df['oci_cat'] = df['oci_desc'].map({'Good':1, 'Fair':1,
'Poor':0})

cond = df['oci_cat'].value_counts()
cond

[24]: 1 21863
0 1142
Name: oci_cat, dtype: int64

[25]: # oci ratings bar graph
fig = plt.figure()
cond.plot.bar(x ='lab', y='val', rot=0, width=0.99,

color="steelblue")
plt.title ('Bar Graph of San Diego Street Conditions')
plt.xlabel('Condition')
plt.ylabel('Count')
plt.show()

cond

[25]: 1 21863
0 1142
Name: oci_cat, dtype: int64

10



[26]: # cast oci info into range of values
labels = [ "{0} - {1}".format(i, i + 5) for i in range(0, 100, 10) ]
df['OCI Range'] = pd.cut(df.oci, range(0, 105, 10),

right=False,
labels=labels).astype(object)

# inspect the new dataframe with this info
df[['oci', 'OCI Range']]

[26]: oci OCI Range
0 34.14 30 - 35
1 97.25 90 - 95
2 62.67 60 - 65
3 68.86 60 - 65
4 28.67 20 - 25
… … …
23000 93.40 90 - 95
23001 91.01 90 - 95
23002 97.26 90 - 95
23003 95.00 90 - 95
23004 80.83 80 - 85

[23005 rows x 2 columns]

[27]: print("\033[1m"+'Street Conditions by Condition Index Range'+"\033[1m")
def oci_cond():

oci_desc_good = df.loc[df.oci_desc == 'Good'].groupby(
['OCI Range'])[['oci_desc']].count()

oci_desc_good.rename(columns = {'oci_desc':'Good'}, inplace=True)
oci_desc_fair = df.loc[df.oci_desc == 'Fair'].groupby(

['OCI Range'])[['oci_desc']].count()
oci_desc_fair.rename(columns = {'oci_desc':'Fair'}, inplace=True)
oci_desc_poor = df.loc[df.oci_desc == 'Poor'].groupby(

['OCI Range'])[['oci_desc']].count()
oci_desc_poor.rename(columns = {'oci_desc':'Poor'}, inplace=True)
oci_desc_comb = pd.concat([oci_desc_good, oci_desc_fair, oci_desc_poor],
axis = 1)
# sum row totals
oci_desc_comb.loc['Total']= oci_desc_comb.sum(numeric_only=True, axis=0)
# sum column totals
oci_desc_comb.loc[:,'Total'] = oci_desc_comb.sum(numeric_only=True, axis=1)
oci_desc_comb.fillna(0, inplace = True)
return oci_desc_comb.style.format("{:,.0f}")

oci_cond = oci_cond().data # retrieve dataframe
oci_cond

Street Conditions by Condition Index Range

[27]: Good Fair Poor Total
70 - 75 4766.0 3.0 0.0 4769.0
80 - 85 7341.0 0.0 0.0 7341.0
90 - 95 3541.0 0.0 0.0 3541.0
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40 - 45 0.0 1095.0 0.0 1095.0
50 - 55 0.0 1685.0 0.0 1685.0
60 - 65 0.0 3322.0 0.0 3322.0
0 - 5 0.0 0.0 37.0 37.0
10 - 15 0.0 0.0 135.0 135.0
20 - 25 0.0 0.0 259.0 259.0
30 - 35 0.0 0.0 711.0 711.0
Total 15648.0 6105.0 1142.0 22895.0

[28]: oci_plt = oci_cond['Total'][0:8].sort_values(ascending=False)
oci_plt.plot(kind='bar', width=0.90)
plt.title('Street Conditions by Index Range')
plt.xlabel('Index Range')
plt.ylabel('# of Streets')
plt.show()

Summary Statistics

[29]: # summary statistics
summ_stats = pd.DataFrame(df['oci'].describe()).T
summ_stats

[29]: count mean std min 25% 50% 75% max
oci 23005.0 74.791413 16.784048 0.0 66.3 79.06 87.3 100.0
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[30]: IQR = summ_stats['75%'][0] - summ_stats['25%'][0]
low_outlier = summ_stats['25%'][0] - 1.5*(IQR)
high_outlier = summ_stats['75%'][0] + 1.5*(IQR)

print('Low Outlier:', low_outlier)
print('High Outlier:', high_outlier)

Low Outlier: 34.8
High Outlier: 118.8

[31]: print("\033[1m"+'Overall Condition Index (OCI) Summary'+"\033[1m")
def oci_by_range():

pd.options.display.float_format = '{:,.2f}'.format
new = df.groupby('OCI Range')['oci']\
.agg(["mean",

"median",
"std",
"min",
"max"])

new.loc['Total'] = new.sum(numeric_only=True, axis=0)
column_rename = {'mean': 'Mean', 'median': 'Median',

'std': 'Standard Deviation',\
'min':'Minimum','max': 'Maximum'}

dfsummary = new.rename(columns = column_rename)
return dfsummary

oci_by_range = oci_by_range()
oci_by_range

Overall Condition Index (OCI) Summary

[31]: Mean Median Standard Deviation Minimum Maximum
OCI Range
0 - 5 6.13 8.00 3.70 0.00 9.69
10 - 15 15.66 16.40 2.82 10.11 19.84
20 - 25 25.77 26.17 2.91 20.12 29.96
30 - 35 35.63 36.04 2.80 30.04 39.98
40 - 45 45.37 45.58 2.88 40.00 49.98
50 - 55 55.62 56.00 2.88 50.00 59.98
60 - 65 65.56 65.80 2.82 60.00 69.99
70 - 75 75.11 75.16 2.97 70.00 79.99
80 - 85 85.14 85.15 2.84 80.00 89.99
90 - 95 93.44 92.89 2.57 90.00 99.33
Total 503.42 507.19 29.18 450.27 548.73

Histogram Distributions

[32]: # histograms
df.hist(grid=False, figsize=(18,12))
plt.show()
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Boxplot Distribution (OCI)

[33]: # selected boxplot distribution for oci values
print("\033[1m"+'Boxplot Distribution'+"\033[1m")

# Boxplot of age as one way of showing distribution
fig = plt.figure(figsize = (10,1.5))
plt.title ('Boxplot: Overall Condition Index (OCI)')
plt.xlabel('Speed Limit')
plt.ylabel('Value')

sns.boxplot(data=df['oci'],
palette="coolwarm",
orient='h',
linewidth=2.5)

plt.show()

IQR = summ_stats['75%'][0] - summ_stats['25%'][0]

print('The first quartile is %s. '%summ_stats['25%'][0])
print('The third quartile is %s. '%summ_stats['75%'][0])
print('The IQR is %s.'%round(IQR,2))
print('The mean is %s. '%round(summ_stats['mean'][0],2))
print('The standard deviation is %s. '%round(summ_stats['std'][0],2))
print('The median is %s. '%round(summ_stats['50%'][0],2))
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Boxplot Distribution

The first quartile is 66.3.
The third quartile is 87.3.
The IQR is 21.0.
The mean is 74.79.
The standard deviation is 16.78.
The median is 79.06.

Correlation Matrix

[34]: # assign correlation function to new variable

corr = df.corr()

# for triangular matrix

matrix = np.triu(corr)

plt.figure(figsize=(
10,10
)
)

# parse corr variable into triangular matrix

sns.heatmap(df.corr(
method='pearson'),
annot=True,
linewidths=.5,
cmap="coolwarm",
mask=matrix,
square = True,
cbar_kws={'label': 'Correlation Index'},
vmin=-1,
vmax=1
)

plt.show()
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Multicollinearity

Let us narrow our focus by removing highly correlated predictors and passing the rest into a new dataframe.

[35]: cor_matrix = df.corr().abs()

upper_tri = cor_matrix.where(np.triu(np.ones(cor_matrix.shape),
k=1).astype(np.bool))

to_drop = [column for column in upper_tri.columns if
any(upper_tri[column] > 0.75)]

print('These are the columns prescribed to be dropped: %s'%to_drop)

These are the columns prescribed to be dropped: ['area_sq_ft', 'oci_wt', 'length',
'width', 'paving_miles']
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Pre-Processing
Based on the prescribed output of the multicollinearity outcome, we should remove area_sq_ft, oci_wt,
length, width, paving_miles, respectively. However, area in square feet is derived from length (x) width
values, and converted to paving miles. Removing all of these features is not necessary. We can keep area in
square feet, as long as we remove the rest.

Feature Engineering

The start date is subtracted from the end date and converted to number of days as one column.

[36]: df['date_end'] = pd.to_datetime(df['date_end'])
df['date_start'] = pd.to_datetime(df['date_start'])

# 7 rows with missing values are dropped in the following line
day_diff = df.dropna(subset=['date_end',

'date_start'],
inplace=True)

df['day_diff'] = (df['date_end'] - df['date_start']).dt.days.astype(int)

[37]: zero_days = df['day_diff'].value_counts()[0]
percent_days = round(zero_days/len(df), 2)*100
print('There are', zero_days, 'rows with "0".')
print('That is roughly', percent_days, '% of the data.')

There are 18451 rows with "0".
That is roughly 80.0 % of the data.

The residential, collector, major, prime, local, and alley functional classes are converted to dummy variables.

[38]: df['func_class'].value_counts()
df['func_cat'] = df['func_class'].map({'Residential': 1,

'Collector': 2,
'Major': 3, 'Prime':4,
'Local':5, 'Alley':6})

The AC Improved, PCC Jointed Concrete, AC Unimproved, and UnSurfaced pavement classes are converted
to dummy variables.

[39]: df['pvm_class'].value_counts()
df['pvm_cat'] = df['pvm_class'].map({'AC Improved': 1,

'PCC Jointed Concrete': 2,
'AC Unimproved': 3,
'UnSurfaced':4})

The current status of the job (i.e., post construction, design, bid/award, construction, and planning) is also
converted to dummy variables.

[40]: df['status'].value_counts()
df['status_cat'] = df['status'].map({'post construction': 1,

'design': 2,
'bid / award': 3,
'construction':4,
'planning': 5})
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Dropping Non-Useful/Re-classed Columns

Columns with explicit titles (i.e., names) and non-convertible/non-meaningful strings are dropped. Redun-
dant columns (columns that have been cast to dummy variables) have also been dropped in conjunction
with the index column which serves no purpose for this experiment.

[41]: # drop unnecessary columns
df = df.drop(columns=['street_from',

'street_to',
'street_name',
'seg_id',
'street',
'pve_id',
'title',
'project_manager',
'project_manager_phone',
'project_id',
'resident_engineer',
'address_street',
'date_moratorium',
'OCI Range',
'total_count'])

df = df.reset_index(drop=True)

# drop variables exhibiting multicollinearity
df = df.drop(columns=['seg_length_ft',

'seg_width_ft',
'length',
'width',
'paving_miles',
'oci_wt'])

# drop re-classed columns
df = df.drop(columns=['func_class',

'pvm_class',
'status',
'type',
'date_end',
'date_start',
'oci_desc'])

The original dataframe is copied into a new dataframe df1 in order to continue the final steps in the prepro-
cessing endeavor. This is to avoid any mis-steps or adverse/unintended effects on the original dataframe.

[42]: # create new dataframe for final pre-processing steps
df1 = df.copy()

One consequence of pre-processing data is that additional missing values may be brought into the mix, so
one final sanity check for this phenomenom is commenced as follows.

[43]: df_check = df.isna().sum()
df_check[df_check>0]
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[43]: Series([], dtype: int64)

[44]: cor_matrix = df.corr().abs()
upper_tri = cor_matrix.where(np.triu(np.ones(cor_matrix.shape),

k=1).astype(np.bool))

to_drop = [column for column in upper_tri.columns if
any(upper_tri[column] > 0.75)]

print('These are the columns prescribed to be dropped: %s'%to_drop)

These are the columns prescribed to be dropped: []

Handling Class Imbalance

Multiple methods for balancing a dataset exist like “undersampling the majority classes” (Fregly & Barth,
2021, p. 178). To account for the large gap (95%) of mis-classed data on the “poor” condition class,
“oversampling the minority class up to the majority class” (p. 179) is commenced. However, such endeavor
cannot proceed in good faith without the unsupervised dimensionality reduction technique of Principal
Component Analysis (PCA), which is carried out “to compact the dataset and eliminate irrelevant Features”
(Naseriparsa & Kashani, 2014, p. 33). In this case, a new dataframe is reduced down into the first two
principal components since the largest percent variance explained exists therein.

[45]: # the first two principal components are used
pca = PCA(n_components=2, random_state=777)
data_2d = pd.DataFrame(pca.fit_transform(df1.iloc[:,0:9]))

The dataframe is prepared for scatterplot analysis as follows.

[46]: data_2d = pd.concat([data_2d, df1['oci_cat']], axis=1)
data_2d.columns = ['x', 'y', 'oci_cat']; data_2d

[46]: x y oci_cat
0 7,986.11 -38.95 0
1 47.96 -40.17 1
2 -435.67 -39.63 1
3 221.51 -39.71 1
4 -348.92 -39.08 0
… … … …
22993 -15,801.67 -40.53 1
22994 12,768.33 114.26 1
22995 9,128.33 114.06 1
22996 -12,991.67 -40.48 1
22997 -12,800.19 -40.25 1

[22998 rows x 3 columns]

[47]: sns.lmplot('x','y', data_2d,
fit_reg=False,
hue='oci_cat',
palette=['#00BFC4',

'#F8766D'])
plt.title('Class Imbalance in Street Condition Index'); plt.show()
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The dataset is oversampled into a new dataframe df2.

The adaptive synthetic sampling approach (ADAYSN) is leveraged “where more synthetic data is generated
for minority class examples that are harder to learn compared to those minority examples that are easier to
learn” (He et al., 2008). This allows for the minority class to be more closely matched (up-sampled) to the
majority class for an approximately even 50/50 weight distribution.

[48]: ada = ADASYN(random_state=777)
X_resampled, y_resampled = ada.fit_resample(df1.iloc[:,0:7],

df1['oci_cat'])

[49]: df2 = pd.concat([pd.DataFrame(X_resampled),
pd.DataFrame(y_resampled)], axis=1)

df2.columns = df1.columns

The classes are re-balanced in a new dataframe using oversampling:

[50]: # rebalanced classes in new df
df2['oci_cat'].value_counts()
zero_count = df2['oci_cat'].value_counts()[0]
one_count = df2['oci_cat'].value_counts()[1]
zero_plus_one = zero_count + one_count
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print('Poor Condition Size:', zero_count)
print('Good Condition Size:', one_count)
print('Total Condition Size:', zero_plus_one)
print('Percent in Poor Condition:', round(zero_count/zero_plus_one,2))
print('Percent in Good Condition:', round(one_count/zero_plus_one,2))

Poor Condition Size: 21714
Good Condition Size: 21858
Total Condition Size: 43572
Percent in Poor Condition: 0.5
Percent in Good Condition: 0.5

The dataframe can now be prepared as a flat .csv file if so desired.

Train-Test-Validation Split

[51]: #Divide train set by .7, test set by .15, and valid set .15
size_train = 30500
size_valid = 6536
size_test = 6536
size_total = size_test + size_valid + size_train
train, test = train_test_split(df2, train_size = size_train,\

random_state = 777)
valid, test = train_test_split(test, train_size = size_valid,\

random_state = 777)

print('Training size:', size_train)
print('Validation size:', size_valid)
print('Test size:', size_test)
print('Total size:', size_train + size_valid + size_test)
print('Training percentage:', round(size_train/(size_total),2))
print('Validation percentage:', round(size_valid/(size_total),2))
print('Test percentage:', round(size_test/(size_total),2))

Training size: 30500
Validation size: 6536
Test size: 6536
Total size: 43572
Training percentage: 0.7
Validation percentage: 0.15
Test percentage: 0.15

[52]: # define (list) the features
X_var = list(df2.columns)

# define the target
target ='oci_cat'
X_var.remove(target)
X_train = train[X_var]
y_train = train[target]
X_test = test[X_var]
y_test = test[target]
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X_valid = valid[X_var]
y_valid = valid[target]

[53]: # rearrange columns so that the target column is set up first
# for later training
df2 = df2[['oci_cat', 'oci', 'area_sq_ft', 'seg_cd', 'day_diff',

'func_cat', 'pvm_cat', 'status_cat']]

[54]: # reinspect the dataframe
df2.head()

[54]: oci_cat oci area_sq_ft seg_cd day_diff func_cat pvm_cat status_cat
0 0 34.14 28,137.78 2 0 6 1 0
1 1 97.25 20,199.63 2 0 6 2 1
2 1 62.67 19,716.00 2 0 6 2 1
3 1 68.86 20,373.18 9 0 6 2 1
4 0 28.67 19,802.75 9 0 6 2 0

Transfer The Final Dataframe (df2) to S3 Bucket

[55]: s3_client = boto3.client("s3")
BUCKET='waterteam1'
KEY='raw_files/df2/df2.csv'
response = s3_client.get_object(Bucket=BUCKET, Key=KEY)

with io.StringIO() as csv_buffer:
df2.to_csv(csv_buffer, index=False, header=True)

response = s3_client.put_object(
Bucket=BUCKET, Key=KEY, Body=csv_buffer.getvalue()

)

Modeling and Training
Logistic Regression

Herein, the classical Anaconda-based scikit-learn approach is leveraged to train the logistic regression model
on the validation set.

[56]: # Un-Tuned Logistic Regression Model
logit_reg = LogisticRegression(random_state=777)
logit_reg.fit(X_train, y_train)

# Predict on validation set
logit_reg_pred1 = logit_reg.predict(X_valid)

# accuracy and classification report (Untuned Model)
print('Untuned Logistic Regression Model')
print('Accuracy Score')
print(accuracy_score(y_valid, logit_reg_pred1))
print('Classification Report \n',

classification_report(y_valid, logit_reg_pred1))
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Untuned Logistic Regression Model
Accuracy Score
0.8959608323133414
Classification Report

precision recall f1-score support

0 0.93 0.85 0.89 3286
1 0.86 0.94 0.90 3250

accuracy 0.90 6536
macro avg 0.90 0.90 0.90 6536

weighted avg 0.90 0.90 0.90 6536

Next, the logistic regression model is tuned using RandomizedSearchCV() and cross validated using repeated
stratified kfold with five splits and two repeats. A set of hyperparamaters are subsequently defined to produce
an overall best accuracy score in conjunction with a set of optimal hyperparameters.

[57]: model1 = LogisticRegression(random_state=777)
cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=2,

random_state=777)
space = dict()

# define search space
space['solver'] = ['newton-cg', 'lbfgs', 'liblinear']
space['penalty'] = ['none', 'l1', 'l2', 'elasticnet']
space['C'] = loguniform(1e-5, 100)

# define search
search = RandomizedSearchCV(model1, space,

scoring='accuracy',
n_jobs=-1, cv=cv, random_state=777)

# execute search
result = search.fit(X_train, y_train)

# summarize result
print('Best Score: %s' % result.best_score_)
print('Best Hyperparameters: %s' % result.best_params_)

Best Score: 0.9518524590163935
Best Hyperparameters: {'C': 0.005639439254142048, 'penalty': 'l2', 'solver': 'lbfgs'}

Training, Testing, and Deploying a Model with Amazon SageMaker’s Built-in XGBoost
Model

[58]: # Define IAM role
role = get_execution_role()

# set the region of the instance
my_region = boto3.session.Session().region_name

# this line automatically looks for the XGBoost image URI and
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# builds an XGBoost container.
xgboost_container = sagemaker.image_uris.retrieve("xgboost",

my_region,
"latest")

print("Success - the MySageMakerInstance is in the " + my_region + \
" region. You will use the " + xgboost_container + \
" container for your SageMaker endpoint.")

Success - the MySageMakerInstance is in the us-east-1 region. You will use the
811284229777.dkr.ecr.us-east-1.amazonaws.com/xgboost:latest container for your SageMaker
endpoint.

[59]: train, test = np.split(df2.sample(frac=1, random_state=777),
[int(0.7 * len(df2))])

print(train.shape, test.shape)

(30500, 8) (13072, 8)

Transfer The Training Data to S3 Bucket

[60]: s3_client = boto3.client("s3")

BUCKET='waterteam1'
KEY='raw_files/train/train.csv'

response = s3_client.get_object(Bucket=BUCKET, Key=KEY)

with io.StringIO() as csv_buffer:
train.to_csv(csv_buffer, index=False, header=False)

response = s3_client.put_object(
Bucket=BUCKET, Key=KEY, Body=csv_buffer.getvalue()

)

[61]: # input training parameters
s3_input_train = sagemaker.inputs.TrainingInput(s3_data=\

's3://{}/raw_files/train'.format(BUCKET), content_type='csv')

Setting up the SageMaker Session and Supplying Instance for XGBoost Model

[62]: sess = sagemaker.Session()
xgb = sagemaker.estimator.Estimator(xgboost_container,role,

instance_count=1,
instance_type='ml.m5.large',
output_path='s3://{}/output'.format(BUCKET),
sagemaker_session=sess)

# parse in the hyperparameters
xgb.set_hyperparameters(max_depth=5,eta=0.2,gamma=4,min_child_weight=6,

subsample=0.8,silent=0,
objective='binary:logistic',num_round=100)
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Train The Model

[63]: xgb.fit({'train': s3_input_train})

2022-04-10 22:17:12 Starting - Starting the training job…
2022-04-10 22:17:29 Starting - Preparing the instances for
trainingProfilerReport-1649629032: InProgress
…
2022-04-10 22:18:55 Downloading - Downloading input data…
2022-04-10 22:19:56 Training - Downloading the training image..Arguments: train
[2022-04-10:22:20:25:INFO] Running standalone xgboost training.
[2022-04-10:22:20:25:INFO] Path /opt/ml/input/data/validation does not exist!
[2022-04-10:22:20:25:INFO] File size need to be processed in the node: 1.09mb.

Available memory size in the node: 294.12mb
[2022-04-10:22:20:25:INFO] Determined delimiter of CSV input is ','
[22:20:25] S3DistributionType set as FullyReplicated
[22:20:25] 30500x7 matrix with 213500 entries loaded from

/opt/ml/input/data/train?format=csv&label_column=0&delimiter=,
[22:20:25] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[0]#011train-error:3.3e-05
[22:20:25] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[1]#011train-error:3.3e-05
[22:20:25] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[2]#011train-error:0
[22:20:25] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[3]#011train-error:0
[22:20:25] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[4]#011train-error:0
[22:20:25] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[5]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[6]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[7]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[8]#011train-error:0
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[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[9]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[10]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[11]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[12]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[13]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[14]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[15]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[16]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[17]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[18]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[19]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[20]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[21]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[22]#011train-error:0
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[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[23]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[24]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[25]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[26]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[27]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[28]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[29]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[30]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[31]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[32]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[33]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[34]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0

pruned nodes, max_depth=1
[35]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[36]#011train-error:0
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[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[37]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[38]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[39]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[40]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[41]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[42]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[43]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[44]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[45]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[46]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[47]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[48]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[49]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[50]#011train-error:0
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[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[51]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[52]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[53]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[54]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[55]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[56]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[57]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[58]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[59]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[60]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[61]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[62]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[63]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[64]#011train-error:0
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[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[65]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[66]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[67]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[68]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[69]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[70]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[71]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[72]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[73]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[74]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[75]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[76]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[77]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[78]#011train-error:0
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[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[79]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[80]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[81]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[82]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[83]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[84]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[85]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[86]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[87]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[88]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[89]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[90]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[91]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[92]#011train-error:0
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[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[93]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[94]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[95]#011train-error:0
[22:20:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[96]#011train-error:0
[22:20:27] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[97]#011train-error:0
[22:20:27] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[98]#011train-error:0
[22:20:27] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 0

pruned nodes, max_depth=0
[99]#011train-error:0

2022-04-10 22:20:43 Uploading - Uploading generated training model
2022-04-10 22:20:43 Completed - Training job completed
Training seconds: 118
Billable seconds: 118

Deploying The Predictor

[64]: xgb_predictor = xgb.deploy(initial_instance_count=1,
instance_type='ml.m5.large')

-----!

Running Predictions

[65]: from sagemaker.serializers import CSVSerializer

# load the data into an array
test_array = test.drop(['oci_cat'], axis=1).values

# set the serializer type
xgb_predictor.serializer = CSVSerializer()

# predict!
predictions = xgb_predictor.predict(test_array).decode('utf-8')

# and turn the prediction into an array
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predictions_array = np.fromstring(predictions[1:], sep=',')
print(predictions_array.shape)

(13072,)

Evaluating The Model

[66]: cm = pd.crosstab(index=test['oci_cat'],
columns=np.round(predictions_array),
rownames=['Observed'],
colnames=['Predicted'])

tn = cm.iloc[0,0]; fn = cm.iloc[1,0]; tp = cm.iloc[1,1];
fp = cm.iloc[0,1]; p = (tp+tn)/(tp+tn+fp+fn)*100
print("\n{0:<20}{1:<4.1f}%\n".format("Overall Classification Rate: ", p))
print("{0:<15}{1:<15}{2:>8}".format("Predicted", "Poor Condition",

"Good Condition"))
print("Observed")
print("{0:<15}{1:<2.0f}% ({2:<}){3:>6.0f}% ({4:<})".format("Poor Condition", \

tn/(tn+fn)*100,tn, fp/(tp+fp)*100, fp))
print("{0:<16}{1:<1.0f}% ({2:<}){3:>7.0f}% ({4:<}) \n".format("Good Condition", \

fn/(tn+fn)*100,fn, tp/(tp+fp)*100, tp))

Overall Classification Rate: 100.0%

Predicted Poor Condition Good Condition
Observed
Poor Condition 100% (6497) 0% (0)
Good Condition 0% (0) 100% (6575)

Terminating the Endpoint To Save on Costs

[67]: # clean-up by deleteting endpoint
xgb_predictor.delete_endpoint(delete_endpoint_config=True)
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