

Supervised Learning Techniques

Cornell University
College of Civil and Environmental Engineering

© 2022 Cornell University

1

Shpaner, Leonid
Supervised Learning Techniques

Course Project

Instructions:

In this project, you will:

• Use linear discriminant analysis.

• Build a logit model and an ordered logit model.

• Examine Naïve Bayes for classification.

• Examine how to use support vector machines.

• Develop the skills to use all these techniques in R.

Except as indicated, use this document to record all your project work and responses to any questions. At a minimum,
you will need to turn in a digital copy of this document to your facilitator as part of your project completion. You may
also have additional supporting documents that you will need to submit. Your facilitator will provide feedback to help
you work through your findings.

Note: Though your work will only be seen by those grading the course and will not be used or shared outside the
course, you should take care to obscure any information you feel might be of a sensitive or confidential nature.

Complete each project part as you progress through the course. Wait to submit the project until all parts are complete.
Begin your course project by completing Part One below. You will find directions to submit this project on the last
Course Project assignment page. Do not hesitate to contact your facilitator if you have any questions about the
project.

Supervised Learning Techniques

Cornell University
College of Civil and Environmental Engineering

© 2022 Cornell University

2

Part One
Building a Model

In this part of the project, you will focus on building a model to understand who might make a good product technician if
hired using linear discriminate analysis logit and ordered logit modeling. The data set you will be using is in the file
HRdata2groups.csv, contained in the RStudio instance.

This part of the project requires some work in RStudio, located on the project page in Canvas. Use that space, along with
the provided scripts and data file, to perform the work, then use this document to answer questions on what you discover.

1. The four performance scores in PerfScore have been mapped into two new categories of Satisfactory and

Unsatisfactory under the heading of CollapseScore. Assume that levels 1 and 2 are unacceptable and levels 3 and
4 are acceptable. Build a linear discriminant analysis using regression with these two categories as the dependent
variable. The purpose of this question is for you to examine the independent variables and conclude which one to
include in the regression model. Several are not useful. Remember that when we do this, only the coefficients in
the model are useful. You may use the function lm() which has the syntax lm(dependent variable ~ independent
variable 1+ independent variable 2+…, data=frame). This function is part of the package caret: hence you will
need to use the command library(caret).

Notice that you have a several variables that might be used as independent variables. You should pick the
variables to include based on how effective they are at explaining the variability in the dependent variable as well
as which variables might be available should you need to use this model to determine if a candidate is likely to
make a good employee. You may assume that the verbal and mechanical scores will be available at the point
where a decision about hiring is to be made. In this question, please give us the linear discriminate model you
have developed.

Call:
lda(Score ~ EmpStatusID + EmpSatisfaction + Aptitude, data = hr_data)

Prior probabilities of groups:
 0 1
0.1088083 0.8911917

Group means:
 EmpStatusID EmpSatisfaction Aptitude
0 3.095238 3.238095 64.41122
1 2.691860 3.970930 124.64620

Coefficients of linear discriminants:
 LD1
EmpStatusID 0.00271593
EmpSatisfaction 0.25572719
Aptitude 0.03966111

Supervised Learning Techniques

Cornell University
College of Civil and Environmental Engineering

© 2022 Cornell University

3

2. Explain the variables you decided to use in the model described above and why.

The employee’s hiring status (EmpStatusID) in conjunction with the employee’s satisfaction
(EmpSatisfaction) and average aptitude score are used in the model.

Averaging the mechanical and verbal scores row over row creates a new (Aptitude) column with these
values. Mechanical and verbal aptitude scores are omitted because of their high between-predictor
relationships. MechanicalApt vs. VerbalApt yields an r = 0.96. Once the scores are averaged and passed
into one column, the problem of multicollinearity is removed. Termd is also omitted because its correlation
with EmpStatusID is r = 0.96.

3. The regression model can be used to classify each of the individuals in the dataset. As discussed in the videos,

you will need to find the cutoff value for the regression value that separates the unsatisfactory performers from the
satisfactory performers. Find this value and determine whether individual 5 is predicted to be satisfactory or not.

In R you can use the predict command to use the regression function with the data associated with each individual
in the dataset. For example:
pred=predict(model, frame) stores the predicted values from the regression function into the variable pred when
the regression model has been assigned to the variable model as in this statement:
model <-lm(dependent variable ~ independent variable 1+ independent variable 2+…, data=frame).

You may then find the mean value of the regression for all observations of unsatisfactory employees using the
command
meanunsat=mean(pred[frame$CollapseScore==0]). You may do the parallel step for the satisfactory employees.
Suppose you have stored this value as meansat.

The cutoff value is then computed in r as follows:
cutoff<-0.5(meanunsat+meansat).

If you want to compare what your model says verses whether they were found to be satisfactory or unsatisfactory
you may add the prediction to the data frame using cbind(frame, pred). This will make the predictions part of the
dataset.

 EmpStatusID EmpSatisfaction CollapseScore Score Aptitude pred
1 1 5 Acceptable 1 180.89209 1.3147863
2 1 3 Acceptable 1 106.66625 0.7863039
3 5 4 Acceptable 1 152.34146 1.1041458
4 1 2 Unacceptable 0 46.98597 0.3851682
5 1 5 Unacceptable 0 41.8677 0.4714585

Individual 5 has unacceptable/unsatisfactory performance, and the model predicts the same with a
probability of 0.471, which is below the cutoff of 0.737.

Supervised Learning Techniques

Cornell University
College of Civil and Environmental Engineering

© 2022 Cornell University

4

4. Construct a logit model using the two performance groups. Compare this model and the discriminant analysis done
in step 1. To construct the logit model, use the function lrm() in the library rms.

 Logistic Regression Model

 lrm(formula = Score ~ MechanicalApt + VerbalApt, data = hr_data)

 Model Likelihood Discrimination Rank Discrim.
 Ratio Test Indexes Indexes
 Obs 193 LR chi2 109.40 R2 0.870 C 0.991
 0 21 d.f. 2 R2(2,193)0.427 Dxy 0.983
 1 172 Pr(> chi2) <0.0001 R2(2,56.1)0.852 gamma 0.983
 max |deriv| 3e-06 Brier 0.017 tau-a 0.192

 Coef S.E. Wald Z Pr(>|Z|)
 Intercept -33.7121 11.5108 -2.93 0.0034
 MechanicalApt 0.4697 0.1689 2.78 0.0054
 VerbalApt -0.0865 0.0743 -1.16 0.2443

The linear discriminant analysis model does not use mechanical aptitude and/or verbal aptitude as
standalone independent variables. The scores are averaged to create one column for general aptitude.

5. Build an ordered logit model for the full four categories for performance. When you call the function lrm() you will

use the original categories PerScoreID. What is the probability that individual two is in each of the four
performance categories? You can use the function predict() to do this. The form of the call is predict(name of the
model you used when you created the model, data=frame, type=”fitted.ind”).

 lrm(formula = PerfScoreID ~ Termd + EmpStatusID + EmpSatisfaction,
 data = hr_data)
 Frequencies of Responses
 1 2 3 4
 8 13 148 24
 Model Likelihood Discrimination Rank Discrim.
 Ratio Test Indexes Indexes
 Obs 193 LR chi2 12.13 R2 0.077 C 0.634
 max |deriv| 8e-09 d.f. 3 R2(3,193)0.046 Dxy 0.268
 Pr(> chi2) 0.0070 R2(3,105.5)0.083 gamma 0.298
 Brier 0.086 tau-a 0.105
 Coef S.E. Wald Z Pr(>|Z|)
 y>=2 1.0880 0.9065 1.20 0.2300
 y>=3 -0.0130 0.8869 -0.01 0.9883
 y>=4 -4.3212 0.9741 -4.44 <0.0001
 Termd -1.2239 1.1992 -1.02 0.3075
 EmpStatusID 0.1560 0.3152 0.49 0.6208
 EmpSatisfaction 0.5872 0.2086 2.81 0.0049

The respective probabilities that individual two will be in each of the four performance categories are:

PerfScoreID=1 PerfScoreID=2 PerfScoreID=3 PerfScoreID=4
 0.04717017 0.08241392 0.78751439 0.08290152

Supervised Learning Techniques

Cornell University
College of Civil and Environmental Engineering

© 2022 Cornell University

5

Part Two
Using Naïve Bayes to Predict a Performance Score

In this part of the project, you will use Naïve Bayes to predict a performance score. This part continues the scenario from
Part One and uses the same modified version of the human resources data set available on the Kaggle website. The data
set you will be using is in the file NaiveBayesHW.csv file. Over the course of this project, your task is to gain insight into
who might be a “high” performer if hired.

This part of the project requires some work in RStudio, located on the project page in Canvas. Use that space, along with
the provided scripts and data files, to perform the work, then use this document to answer questions on what you
discover.

1. Using only the mechanical aptitude score, use Naïve Bayes to predict the performance score for each employee.
Professor Nozick discretized the mechanical scores into four classes.

Notice only three of four classes have observations. This discretization is in the data file NaiveBayesHW.csv. The
function to create the model is naiveBayes().

naive_df <- read.csv('NaiveBayesHW.csv') # read in the dataset
inspect the dataset
head(naive_df)

 EmpID Termd EmpStatusID PerfScoreID EmpSatisfaction PerfScore MechanicalApt
1 1 0 1 4 5 Class4 Level4
2 2 0 1 3 3 Class3 Level3
3 3 1 5 3 4 Class3 Level4
4 4 0 1 1 2 Class1 Level1
5 5 0 1 1 5 Class1 Level1
6 6 0 1 4 4 Class4 Level3

nbmodel <- naiveBayes(PerfScore~MechanicalApt, data=naive_df)
print(nbmodel)

type = raw' specifies that R should return the probability that a point is in
each risk group. Not specifying a type would print the most likely category
that each point would fall into.

pred_bayes <- predict(nbmodel, naive_df, type='raw')
head(pred_bayes)

Naive Bayes Classifier for Discrete Predictors

Call:

Supervised Learning Techniques

Cornell University
College of Civil and Environmental Engineering

© 2022 Cornell University

6

naiveBayes.default(x = X, y = Y, laplace = laplace)

A-priori probabilities:
Y
 Class1 Class2 Class3 Class4
0.04145078 0.06735751 0.76683938 0.12435233

Conditional probabilities:
 MechanicalApt
Y Level1 Level3 Level4
 Class1 1.0000000 0.0000000 0.0000000
 Class2 0.0000000 0.0000000 1.0000000
 Class3 0.0000000 0.6554054 0.3445946
 Class4 0.0000000 0.3333333 0.6666667

 Class1 Class2 Class3 Class4
 [1,] 9.999000e-05 0.1624837516 0.63743626 0.199980002
 [2,] 7.617524e-05 0.0001237848 0.92362480 0.076175241
 [3,] 9.999000e-05 0.1624837516 0.63743626 0.199980002
 [4,] 9.773977e-01 0.0015882712 0.01808186 0.002932193
 [5,] 9.773977e-01 0.0015882712 0.01808186 0.002932193
 [6,] 7.617524e-05 0.0001237848 0.92362480 0.076175241
 [7,] 7.617524e-05 0.0001237848 0.92362480 0.076175241
 [8,] 7.617524e-05 0.0001237848 0.92362480 0.076175241
 [9,] 9.999000e-05 0.1624837516 0.63743626 0.199980002
[10,] 9.999000e-05 0.1624837516 0.63743626 0.199980002

2. Using this modeling approach, what is your assessment of the probability that individual 10 will evolve into each of

the four probability classes if hired? This can be done using the model created above and the pred() function.

The arguments for that function are the model name, data and for type use “raw”. This question is parallel to the
Practice using Naïve Bayes activity you completed in R.

The probability that individual 10 will evolve into each of the four probability classes if hired is as follows:
individual10 <- pred_bayes[10,]
individual10 <- data.frame(individual10)
colnames(individual10) <- c('Probability')
individual10
 Probability
Class 1 0.00009999
Class 2 0.16248375
Class 3 0.63743626
Class 4 0.19998000

Supervised Learning Techniques

Cornell University
College of Civil and Environmental Engineering

© 2022 Cornell University

7

Part Three
Building Classification Trees

In this part of the project, you will build classification trees. This part continues the scenario from Parts One and Two, as it
uses the same modified version of the human resources data set available on the Kaggle website. Use
the HRdata4groups.csv data set to predict each individual's performance (Performance Score ID) using classification
trees. In the space below, you will explain the model you have developed and describe how well it performs.

This part of the project requires some work in RStudio, located on the project page in Canvas. Use that space, along with
the provided scripts and data files, to perform the work, then use this document to answer questions on what you
discover.

1. In the space below, explain the model you developed. It is sufficient to use the function ctree() in R to accomplish
this in the style of the codio exercise Practice: Building a Classification Tree in R—Small Example.

Before modeling can commence, it is important to establish between-predictor relationships and the
potential presence of multicollinearity, because this is a refined dataset from a new .csv file. The
classification trees model is developed from all variables except for mechanical aptitude and verbal
aptitude. Verbal aptitude exhibits a noticeably high correlation of r = 0.96 with mechanical aptitude.
However, rather than omitting this one variable, both aptitude columns are replaced with a new column by
the name of aptitude which has been averaged from their results.

build the classification tree
ctout <- ctree(PerfScoreID ~ ., data=hrgroups_final)
ctout

Model formula:
PerfScoreID ~ EmpStatusID + CollapseScore + PayRate + Age + JobTenure +
 EngagementSurvey + EmpSatisfaction + Aptitude

Fitted party:
[1] root
| [2] CollapseScore <= 0
| | [3] Aptitude <= 53.89066: 1.000 (n = 8, err = 0.0)
| | [4] Aptitude > 53.89066: 2.000 (n = 13, err = 0.0)
| [5] CollapseScore > 0
| | [6] Aptitude <= 154.50311: 3.052 (n = 154, err = 7.6)
| | [7] Aptitude > 154.50311: 3.889 (n = 18, err = 1.8)

Number of inner nodes: 3
Number of terminal nodes: 4

 Correct Classification of Data Point: 0.1088083

Supervised Learning Techniques

Cornell University
College of Civil and Environmental Engineering

© 2022 Cornell University

8

2. In the space below, describe how well your model performs.

Whenever a CollapseScore is less than or equal to zero, it is classified as unacceptable or unsatisfactory
performance. Thus, under this umbrella category, aptitude scores less than or equal to 53.89 (level 1)
exhibit no error (third node), where n = 8. Aptitude scores greater than 53.89066 (level 2) exhibit no error,
where n = 13.

Whenever a CollapseScore is greater than 0, employee performance is classified as acceptable or
satisfactory. This, under this umbrella category, aptitude scores less than or equal to 154.50 reach a node
level of 3.052, with an error of 7.6, where n = 154 observations. Aptitude scores greater than 154.50 reach a
higher node level of 3.89, where there are n = 18 observations, and a lower error rate of 1.8.

There are three inner nodes and four terminal nodes, with a correct classification of data points at
approximately 11%. The performance is low, and this model warrants iterative refinement.

Supervised Learning Techniques

Cornell University
College of Civil and Environmental Engineering

© 2022 Cornell University

9

Part Four
Applying SVM to a Data Set

In this part of the project, you will apply SVM to a data set. The RStudio instance contains the file
acquisitionacceptanceSVM.csv, which includes information about whether or not homeowners accepted a government
offer to purchase their home. This part of the project requires some work in RStudio, located on the project page in
Canvas. Use that space, along with the provided scripts and data files, to perform the work, then use this document to
answer questions on what you discover.

1. Apply the tool SVM to the acquisition data set in the CSV file acquisitionacceptanceSVM.csv to predict which
homeowners will most likely accept the government’s offer. What variables did you choose to use in your
analysis?

Inspecting the dataframe for near zero variance predictors from a visual standpoint alone identifies current
market value (CurMarketValue) to be a variable that exhibits such behavior. However, the nearZeroVar()
function from the caret library does not expose such variables. Near zero variance measures the fraction of
unique values in the columns across the dataset. Moreover, the correlation matrix does not expose any
sources of high between-predictor relationships (beyond the cutoff point of r = 0.75). This relegates the
variable selection process to Principal Component Analysis (PCA), but this is a dimensionality reduction
technique; there are only 12 variables and 1,531 rows of data.

Casting the target (Accept) variable to a factor is done to categorize the data. There are enough rows in this
dataset to carry out a train-test split, and so it is done, with 70% partitioned into the training set, and the
remaining 30% into the test set. The e1071 package does not allow for a printout of variable importance
varImp for feature selection, the caret package is used to accomplish this task. The model’s cost and kernel
hyperparameters are tuned over the training data with a 10-fold cross validation sampling method. Price75
and Price125 are the top two variables surpassing a score of 80 in importance and are thus selected for the
soft-margin support vector machine.

Supervised Learning Techniques

Cornell University
College of Civil and Environmental Engineering

© 2022 Cornell University

10

2. How good was your model at correctly predicting who would and who would not accept the offer?

The confusion matrix is used to obtain the first measure of model performance (accuracy) using the followin
g equation.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision (specificity) measures out of everyone who accepted a government offer to purchase their home,
how many actually accepted? It is calculated as follows.

Precision =
TP

TP + FP

Recall (sensitivity) measures the true positive rate (TPR), which is the number of correct predictions in the `
Accept` class divided by the total number of `Accept` instances. It is calculated as follows:

Recall =
TP

TP + FN

The f1-score is the harmonic mean of precision and recall, and is calculated as follows:

𝑓𝑓1 =
TP

TP + FN

Using the test data (30% hold out), the model’s accuracy is only 15% improvement above baseline, coming
out to 65%. However, the model’s ability to correctly classify the ‘Accept’ class is effectively high at 95% spe
cificity. The ROC Curve calculates an AUC (area under the curve) score of ~64%, so model performance is
quite low. Moreover, the ROC Curve below shows that as the true positive rate increases, so does the false
positive rate, so, for every increase in the false positive rate, there is a greater increase in false alarms.

Supervised Learning Techniques

Cornell University
College of Civil and Environmental Engineering

© 2022 Cornell University

11

3. When building models, we often use part of the data to estimate the model and use the remainder for prediction.

Why do we do this? It is not necessary to do this for each of the problems above. It is essential to realize that you
will need to do this in practice.

We are interested in seeing how the model performs on unseen data. Thus, we partition the data into a
train-test split. Ideally, there are enough rows of data to conduct a three-way train-validation-test split such
that the train-validation set becomes the development set. However, we are working with a smaller amount
of data, so we are using a two-way split, where the training set (development set) is the larger portion of
data (70-80%), and the remaining 30% is allocated to the test set. Anything can be done repeatedly to the
development set (e.g., iteration, hyperparameterization, experimentation, etc.), as long as the test set
remains uncontaminated (unseen). Once the model is finalized through the training set, it can be predicted
on the remaining test set.

__
To submit this assignment, please refer to the instructions in the course.

Supervised Learning Techniques Course Project
Cornell University - CEEM585

Leonid Shpaner

January 1, 2023

function for loading necessary libraries and installing them if they have not
yet been installed

pack <- function(lib){

new.lib <- lib[!(lib %in%
installed.packages()[, 'Package'])]

if (length(new.lib))
install.packages(new.lib, dependencies = TRUE)

sapply(lib, require, character.only = TRUE)

}

packages <- c('partykit', 'e1071', 'caret', 'corrplot', 'MASS', 'car', 'DT',
'ggplot2', 'cowplot', 'ggpubr', 'rms', 'pander', 'ROCR', 'pROC')

pack(packages) # run function

partykit e1071 caret corrplot MASS car DT ggplot2
TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
cowplot ggpubr rms pander ROCR pROC
TRUE TRUE TRUE TRUE TRUE TRUE

set working directory by concatenating long string
string1 <- 'C:/Users/lshpaner/OneDrive/Cornell University/Coursework'
string2 <- '/Data Science Certificate Program/CEEM585 '
string3 <- '- Supervised Learning Techniques'

concatenate each string
working_dir = paste(string1, string2, string3, sep = '')

set the working directory by calling function
setwd(working_dir)

confirm working directory
getwd()

[1] “C:/Users/lshpaner/OneDrive/Cornell University/Coursework/Data Science Certificate Program/CEEM585
- Supervised Learning Techniques”

1

Part One

Building A Model

In this part of the project, you will focus on building a model to understand who might make a good product
technician if hired using linear discriminate analysis logit and ordered logit modeling. The data set you will
be using is in the file HRdata2groups.csv, contained in the RStudio instance.

1. The four performance scores in PerfScore have been mapped into two new categories of Satisfactory
and Unsatisfactory under the heading of CollapseScore. Assume that levels 1 and 2 are unacceptable
and levels 3 and 4 are acceptable. Build a linear discriminant analysis using regression with these
two categories as the dependent variable. The purpose of this question is for you to examine the
independent variables and conclude which one to include in the regression model. Several are not
useful. Remember that when we do this, only the coefficients in the model are useful. You may
use the function lm() which has the syntax lm(dependent variable ~ independent variable 1+
independent variable 2+..., data=frame). This function is part of the package caret: hence you
will need to use the command library(caret).
Notice that you have a several variables that might be used as independent variables. You should pick
the variables to include based on how effective they are at explaining the variability in the dependent
variable as well as which variables might be available should you need to use this model to determine if
a candidate is likely to make a good employee. You may assume that the verbal and mechanical scores
will be available at the point where a decision about hiring is to be made. In this question, please give
us the linear discriminate model you have developed.

The dataset is inspected and the categorical classes of Acceptable and Unacceptable are cast to the
Performance Score PerfScoreID in a new column named CollapseScore. However, since supervised learning
models need to learn from a numerical, though, binarized target column, a new column of Score is thus
created. Extraneous or otherwise not useful columns like Employee ID, CollapseScore and Score are
removed such that a numerical only dataframe is created for subsequent distribution analysis.

read in the data
hr_data <- read.csv('HRdata2groups.csv')

Adding column based on other column:
inspect first five rows of the dataset
pandoc.table(head(hr_data), style = 'grid', split.table = Inf)

EmpID Termd EmpStatusID PerfScoreID EmpSatisfaction MechanicalApt VerbalApt
1 0 1 4 5 174.6 187.2
2 0 1 3 3 110.6 102.7
3 1 5 3 4 148.6 156.1
4 0 1 1 2 49.11 44.86
5 0 1 1 5 42.15 41.59
6 0 1 4 4 133 130.2

cast categorical classes to Performance Score
hr_data$CollapseScore <- ifelse(hr_data$PerfScoreID >= 3, 'Acceptable',

'Unacceptable')
numerically binarize these performance scores
hr_data$Score <- ifelse(hr_data$CollapseScore == 'Acceptable', 1, 0)
pandoc.table(head(hr_data), style = 'grid')

2

Table 2: Table continues below

EmpID Termd EmpStatusID PerfScoreID EmpSatisfaction
1 0 1 4 5
2 0 1 3 3
3 1 5 3 4
4 0 1 1 2
5 0 1 1 5
6 0 1 4 4

MechanicalApt VerbalApt CollapseScore Score
174.6 187.2 Acceptable 1
110.6 102.7 Acceptable 1
148.6 156.1 Acceptable 1
49.11 44.86 Unacceptable 0
42.15 41.59 Unacceptable 0
133 130.2 Acceptable 1

extract meaningful data (i.e., remove categorical data types)
hr_data_numeric <- subset(hr_data, select = -c(EmpID, CollapseScore, Score))

The histogram distributions below do not yield or uncover any near-zero-variance predictors, but it is worth
noting that Termd has only two class labels. MechanicalApt and VerbalApt exhibit normality; other vari-
ables approach the same trend.

create function for plotting histograms to check for near-zero variance
in distributions where input `df` is a dataframe of interest
nearzerohist <- function(df, x, y) {

x rows by y columns & adjust margins
par(mfrow = c(x, y), mar = c(4, 4, 4, 0))
for (i in 1:ncol(df)){

hist(df[, i],
xlab = names(df[i]),
main = paste(names(df[i]), ''),
col = 'gray18')

}

check for near zero variance predictors using if-else statement
nearzero_names <- nearZeroVar(df)
if (length(nearzero_names) == 0) {

print('There are no near-zero variance predictors.')
} else {

cat('The following near-zero variance predictors exist:',
print(nearzero_names))

}
}

call the `nearzerohist()` function
nearzerohist(hr_data_numeric, x = 2, y = 3)

3

Termd

Termd

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

80
EmpStatusID

EmpStatusID

F
re

qu
en

cy

1 2 3 4 5

0
40

80

PerfScoreID

PerfScoreID

F
re

qu
en

cy

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
50

15
0

EmpSatisfaction

EmpSatisfaction

F
re

qu
en

cy

1 2 3 4 5

0
20

50

MechanicalApt

MechanicalApt

F
re

qu
en

cy

50 100 150 200

0
20

40

VerbalApt

VerbalApt

F
re

qu
en

cy

0 50 100 150 200

0
20

40

[1] "There are no near-zero variance predictors."

Examining the Score column separately yields an imbalanced dataset where 172 Acceptable cases outweigh
the 21 Unacceptable classes. However, no solution is rendered for this outcome. The data is treated as-is.

function for generating class balance table and barplot
inputs --> feat: feature or column of interest
title: plot title
x: x-axis label
y: y-axis label

class_balance <- function(feat, title, x, y) {

check target column's class balance
parse target variable into table showcasing class distribution
feat_table <- table(unname(feat)) # generate table for column

fix plot margins
par(mar = c (2, 2, 2, 1))

plot the counts (values) of each respective class on barplot
barplot(feat_table, main = title, space = c(0), horiz = FALSE,

names.arg = c(x, y),
col = c('cornflowerblue', 'brown2'))

return (feat_table)

}

class_balance(feat = hr_data$CollapseScore, title = 'HR by Class',
x = 'Acceptable', y = 'Unacceptable')

4

Acceptable Unacceptable

HR by Class

0
50

10
0

15
0

##
Acceptable Unacceptable
172 21

Explain the variables you decided to use in the model described above and why.

The employee’s hiring status EmpStatusID in conjunction with the employee’s satisfaction EmpSatisfaction
and average aptitude score are used in the model.

Averaging the mechanical and verbal scores row over row creates a new Aptitude column with these values.
Mechanical and verbal aptitude scores are omitted because of their high between-predictor relationships.
MechanicalApt vs. VerbalApt yields an r = 0.96. Once the scores are averaged and passed into one
column, the problem of multicollinearity is removed. Termd is also omitted because its correlation with
EmpStatusID is r = 0.96.

create function to plot correlation matrix and establish multicollinearity
takes one input (df) to pass in dataframe of interest

multicollinearity <- function(df) {

Examine between predictor correlations/multicollinearity
corr <- cor(df)
corrplot(corr, mar = c(0, 0, 0, 0), method = 'color',

col = colorRampPalette(c('#FC0320', '#FFFFFF',
'#FF0000'))(100),

addCoef.col = 'black', tl.srt = 45, tl.col = 'black',
type = 'lower')

assign variable to count how many highly correlated
variables there exist based on 0.75 threshold
highCorr <- findCorrelation(corr, cutoff = 0.75)

find correlated names
highCorr_names <- findCorrelation(corr, cutoff = 0.75, names = TRUE)
cat(' The following variables should be omitted:',
paste('\n', unlist(highCorr_names)))

}

5

determine multicollinearity
multicollinearity(hr_data[c(1:7)])

1

0.14

0.18

0.03

0.02

−0.01

−0.02

1

0.96

−0.12

−0.01

−0.12

−0.17

1

−0.1

0.01

−0.09

−0.14

1

0.27

0.79

0.76

1

0.24

0.25

1

0.96 1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Em
pI

D

Te
rm

d

Em
pS

ta
tu

sID

Per
fS

co
re

ID

Em
pS

at
isf

ac
tio

n

M
ec

ha
nic

alA
pt

Ve
rb

alA
pt

EmpID

Termd

EmpStatusID

PerfScoreID

EmpSatisfaction

MechanicalApt

VerbalApt

The following variables should be omitted:
VerbalApt
MechanicalApt
Termd

Variance Inflation Factor (VIF) scores confirm similar behavior, exhibiting high multicollinearity once a
threshold of five is reached and surpassed. A linear model (lm) is used to test this behavior.

use generalized linear model to determine confirm multicollinearity w/ VIF
model_all <- lm(Score ~ . - CollapseScore, data = hr_data) # remove CollapseScore

since it is target
and we are only interested in comparing between-predictor relationships

use car library to extract VIF and parse it into a pandoc table using the
linear model as a proxy for analysis
pandoc.table(vif(model_all), style = 'grid', split.table = Inf)

EmpID Termd EmpStatusID PerfScoreID EmpSatisfaction MechanicalApt VerbalApt
1.058 13.74 13.93 2.785 1.096 15.91 13.94

6

create vector of VIF values for plotting
vif_values <- vif(model_all)

par(mar = c(7.5, 2, 1, 1)) # fix plot margins
create column chart to display each VIF value
barplot(vif_values, main = 'VIF Values', horiz = FALSE, col = 'steelblue',

las = 2)

add vertical line at 5 as after 5 there is severe correlation
abline(h = 5, lwd = 3, lty = 2)

E
m

pI
D

Te
rm

d

E
m

pS
ta

tu
sI

D

P
er

fS
co

re
ID

E
m

pS
at

is
fa

ct
io

n

M
ec

ha
ni

ca
lA

pt

V
er

ba
lA

pt

VIF Values

0

5

10

15

create average score since result of both scores creates multicollinearity
hr_data$Aptitude <- rowMeans(hr_data[, c(6, 7)], na.rm = TRUE)

create a final dataframe with selected columns of interest for modeling
hr_data_final <- hr_data[, c(3, 5, 8, 9, 10)]

Re-examine between predictor correlations/multicollinearity
highCorr <- findCorrelation(cor(hr_data_final[c(1, 2, 5)]), cutoff = 0.75,

names = TRUE)
cat(' The following variables should be omitted:',
paste('\n', unlist(highCorr)))

The following variables should be omitted:
##

The Score vs. Aptitude scatterplot below exhibits a moderate correlation of r = 0.62. Employee satisfaction
exhibits a much weaker relationship of r = 0.26, and there is almost no relationship between Score and
Employee Status ID where r = -0.067.

7

create function for plotting correlations between variables
inputs: xvar: independent variable, yvar: dependent variable,
title: plot title, xlab: x-axis label, ylab: y-axis label
correl_plot <- function(df, xvar, yvar, title, xlab, ylab) {

ggplot(df, aes(x = xvar, y = yvar)) +
ggtitle(title) +
xlab(xlab) + ylab(ylab) +
geom_point(pch = 1) + ylim(0, 1.25) +
geom_smooth(method = 'lm', se = FALSE) +
theme_classic() +
stat_cor(method = 'pearson', label.x = 0.15, label.y = 0.20) # correl coeff.

}

create three correlation plots on same grid
plot1 <- correl_plot(hr_data_final, xvar = hr_data_final$EmpStatusID,

yvar = hr_data_final$Score, title = 'Score vs. EmpStatusID',
xlab = 'EmpStatusID', ylab = 'Score')

plot2 <- correl_plot(hr_data_final, xvar = hr_data_final$EmpSatisfaction,
yvar = hr_data_final$Score,
title = 'Score vs. EmpSatisfaction',
xlab = 'EmpSatisfaction', ylab = 'Score')

plot3 <- correl_plot(hr_data_final, xvar = hr_data_final$Aptitude,
yvar = hr_data_final$Score, title = 'Score vs. Aptitude',
xlab = 'Aptitude', ylab = 'Score')

plot all correlations together
plot_grid(plot1, plot2, plot3, labels = 'AUTO', ncol = 3, align = '')

R = − 0.067, p = 0.35

0.0

0.4

0.8

1.2

0 1 2 3 4 5
EmpStatusID

S
co

re

Score vs. EmpStatusIDA

R = 0.26, p = 0.00029

0.0

0.4

0.8

1.2

0 1 2 3 4 5
EmpSatisfaction

S
co

re

Score vs. EmpSatisfactionB

R = 0.62, p < 2.2e−16

0.0

0.4

0.8

1.2

0 50 100 150 200
Aptitude

S
co

re

Score vs. AptitudeC

Fitting the linear discriminant analysis model produces the following results.

par(mar = c(4, 2, 0, 0)) # fix plot margins
Fit the Linear Discriminant Analysis (LDA) model
lda_fit <- lda(Score ~ EmpStatusID + EmpSatisfaction + Aptitude,

data = hr_data_final); lda_fit

8

Call:
lda(Score ~ EmpStatusID + EmpSatisfaction + Aptitude, data = hr_data_final)
##
Prior probabilities of groups:
0 1
0.1088083 0.8911917
##
Group means:
EmpStatusID EmpSatisfaction Aptitude
0 3.095238 3.238095 64.41122
1 2.691860 3.970930 124.64620
##
Coefficients of linear discriminants:
LD1
EmpStatusID 0.00271593
EmpSatisfaction 0.25572719
Aptitude 0.03966111

plot(lda_fit) # plot the lda model

−2 0 2 4

0.
0

group 0

−2 0 2 4

0.
0

group 1

3. The regression model can be used to classify each of the individuals in the dataset. As discussed in the
videos, you will need to find the cutoff value for the regression value that separates the unsatisfactory
performers from the satisfactory performers. Find this value and determine whether individual 5 is
predicted to be satisfactory or not.
In R you can use the predict command to use the regression function with the data associated with
each individual in the dataset. For example: pred=predict(model, frame) stores the predicted values
from the regression function into the variable pred when the regression model has been assigned to the
variable model as in this statement: model <-lm(dependent variable ~ independent variable 1+
independent variable 2+..., data=frame).
You may then find the mean value of the regression for all observations of unsatisfactory employees
using the command meanunsat=mean(pred[frame$CollapseScore==0]).
The cutoff value is then computed in r as follows: cutoff<-0.5(meanunsat+meansat).
If you want to compare what your model says verses whether they were found to be satisfactory or
unsatisfactory you may add the prediction to the data frame using cbind(frame, pred). This will
make the predictions part of the dataset.

9

A generalized linear model is fitted accordingly, a column of predictions is appended to the dataframe, and
a cutoff value is determined accordingly. Individual 5 has unacceptable/unsatisfactory performance, and the
model predicts the same with a probability of 0.471, which is below the cutoff of 0.737.

Fit a regression model
reg_model <- lm(Score ~ EmpStatusID + EmpSatisfaction + Aptitude,

data = hr_data_final)

stores the predicted values from the regression function into the variable
pred when the regression model has been assigned to the variable reg_model
pred <- predict(reg_model, hr_data_final)

find the mean value of the regression for all observations of unsatisfactory
and satisfactory employees
meanunsat <- mean(pred[hr_data_final$Score == 0])
meansat <- mean(pred[hr_data_final$Score == 1])
cat(' Mean of Satisfactory Results =', meansat, '\n',

'Mean of Unsatisfactory Results =', meanunsat, '\n')

Mean of Satisfactory Results = 0.9340495 Mean of Unsatisfactory Results = 0.540166

determine the cutoff value
cutoff <- 0.5*(meanunsat + meansat)
cat(' Cutoff Value =', cutoff)

Cutoff Value = 0.7371078

cbind_hrdatafinal <- cbind(hr_data_final, pred)
pandoc.table(head(cbind_hrdatafinal), style = 'grid', split.table = Inf)

EmpStatusID EmpSatisfaction CollapseScore Score Aptitude pred
1 5 Acceptable 1 180.9 1.315
1 3 Acceptable 1 106.7 0.7863
5 4 Acceptable 1 152.3 1.104
1 2 Unacceptable 0 46.99 0.3852
1 5 Unacceptable 0 41.87 0.4715
1 4 Acceptable 1 131.6 0.9764

4. Construct a logit model using the two performance groups. Compare this model and the discriminant
analysis done in step 1. To construct the logit model, use the function lrm() in the library rms.

Construct a logit model using the two performance groups
logit <- lrm(Score ~ MechanicalApt + VerbalApt, data = hr_data); logit

Logistic Regression Model
##
lrm(formula = Score ~ MechanicalApt + VerbalApt, data = hr_data)
##
Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

10

Obs 193 LR chi2 109.40 R2 0.870 C 0.991
0 21 d.f. 2 R2(2,193)0.427 Dxy 0.983
1 172 Pr(> chi2) <0.0001 R2(2,56.1)0.852 gamma 0.983
max |deriv| 3e-06 Brier 0.017 tau-a 0.192
##
Coef S.E. Wald Z Pr(>|Z|)
Intercept -33.7121 11.5108 -2.93 0.0034
MechanicalApt 0.4697 0.1689 2.78 0.0054
VerbalApt -0.0865 0.0743 -1.16 0.2443
##

The linear discriminant analysis model does not use mechanical aptitude and/or verbal aptitude as standalone
independent variables. The scores are averaged to create one column for general aptitude.

5. Build an ordered logit model for the full four categories for performance. When you call the function
lrm() you will use the original categories PerScoreID. What is the probability that individual two is
in each of the four performance categories? You can use the function predict() to do this. The form
of the call is predict(name of the model you used when you created the model, data=frame,
type=”fitted.ind”).

Build an ordered logit model for the full four categories for performance
ologit <- lrm(PerfScoreID ~ Termd + EmpStatusID + EmpSatisfaction, data = hr_data)
ologit

Logistic Regression Model
##
lrm(formula = PerfScoreID ~ Termd + EmpStatusID + EmpSatisfaction,
data = hr_data)
##
##
Frequencies of Responses
##
1 2 3 4
8 13 148 24
##
Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes
Obs 193 LR chi2 12.13 R2 0.077 C 0.634
max |deriv| 8e-09 d.f. 3 R2(3,193)0.046 Dxy 0.268
Pr(> chi2) 0.0070 R2(3,105.5)0.083 gamma 0.298
Brier 0.086 tau-a 0.105
##
Coef S.E. Wald Z Pr(>|Z|)
y>=2 1.0880 0.9065 1.20 0.2300
y>=3 -0.0130 0.8869 -0.01 0.9883
y>=4 -4.3212 0.9741 -4.44 <0.0001
Termd -1.2239 1.1992 -1.02 0.3075
EmpStatusID 0.1560 0.3152 0.49 0.6208
EmpSatisfaction 0.5872 0.2086 2.81 0.0049
##

11

probability that individual two is in each of the four performance categories
pred_ologit <- predict(ologit, data = hr_data, type = 'fitted.ind')

inspect the dataframe
pandoc.table(head(pred_ologit), style = 'grid', split.table = Inf, round = 4)

PerfScoreID=1 PerfScoreID=2 PerfScoreID=3 PerfScoreID=4
0.0151 0.0289 0.7297 0.2263
0.0472 0.0824 0.7875 0.0829
0.0477 0.0833 0.787 0.0819
0.0818 0.1295 0.7409 0.0478
0.0151 0.0289 0.7297 0.2263
0.0268 0.0496 0.7837 0.1399

get predictions only for second individual
individual2 <- pred_ologit[2,]; cat('\n')

par(mar = c(4, 4, 1, 1)) # fix plot margins
plot(individual2, type = 'l', main = 'Predictions for Individual 2',

xlab = 'Category', ylab = 'Probability')

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
2

0.
4

0.
6

0.
8 Predictions for Individual 2

Category

P
ro

ba
bi

lit
y

pandoc.table(individual2, style = 'grid', split.table = Inf, round = 4)

PerfScoreID=1 PerfScoreID=2 PerfScoreID=3 PerfScoreID=4
0.0472 0.0824 0.7875 0.0829

The respective probabilities that individual two will be in each of the four performance categories are
0.0471702, 0.0824139, 0.7875144, 0.0829015.

12

Part Two

Using Naïve Bayes to Predict a Performance Score

In this part of the project, you will use Naïve Bayes to predict a performance score. This part continues the
scenario from Part One and uses the same modified version of the human resources data set available on the
Kaggle website. The data set you will be using is in the file NaiveBayesHW.csv file. Over the course of this
project, your task is to gain insight into who might be a “high” performer if hired.

1. Using only the mechanical aptitude score, use Naïve Bayes to predict the performance score for each
employee. Professor Nozick discretized the mechanical scores into four classes. Notice only three of
four classes have observations. This discretization is in the data file NaiveBayesHW.csv. The function
to create the model is naiveBayes().

naive_df <- read.csv('NaiveBayesHW.csv') # read in the dataset

inspect the dataset
pandoc.table(head(naive_df), style = 'simple', split.table = Inf)

EmpID Termd EmpStatusID PerfScoreID EmpSatisfaction PerfScore MechanicalApt
1 0 1 4 5 Class4 Level4
2 0 1 3 3 Class3 Level3
3 1 5 3 4 Class3 Level4
4 0 1 1 2 Class1 Level1
5 0 1 1 5 Class1 Level1
6 0 1 4 4 Class4 Level3

assign the naivebayes function to a new variable
nbmodel <- naiveBayes(PerfScore ~ MechanicalApt, data = naive_df)
print(nbmodel)

##
Naive Bayes Classifier for Discrete Predictors
##
Call:
naiveBayes.default(x = X, y = Y, laplace = laplace)
##
A-priori probabilities:
Y
Class1 Class2 Class3 Class4
0.04145078 0.06735751 0.76683938 0.12435233
##
Conditional probabilities:
MechanicalApt
Y Level1 Level3 Level4
Class1 1.0000000 0.0000000 0.0000000
Class2 0.0000000 0.0000000 1.0000000
Class3 0.0000000 0.6554054 0.3445946
Class4 0.0000000 0.3333333 0.6666667

13

predict the naive bayes model
type = raw' specifies that R should return the probability that a point is in
each risk group. Not specifying a type would print the most likely category
that each point would fall into.

pred_bayes <- predict(nbmodel, naive_df, type = 'raw')
head(pred_bayes, 20) # inspect the first 10 rows

Class1 Class2 Class3 Class4
[1,] 9.999000e-05 0.1624837516 0.63743626 0.199980002
[2,] 7.617524e-05 0.0001237848 0.92362480 0.076175241
[3,] 9.999000e-05 0.1624837516 0.63743626 0.199980002
[4,] 9.773977e-01 0.0015882712 0.01808186 0.002932193
[5,] 9.773977e-01 0.0015882712 0.01808186 0.002932193
[6,] 7.617524e-05 0.0001237848 0.92362480 0.076175241
[7,] 7.617524e-05 0.0001237848 0.92362480 0.076175241
[8,] 7.617524e-05 0.0001237848 0.92362480 0.076175241
[9,] 9.999000e-05 0.1624837516 0.63743626 0.199980002
[10,] 9.999000e-05 0.1624837516 0.63743626 0.199980002
[11,] 7.617524e-05 0.0001237848 0.92362480 0.076175241
[12,] 7.617524e-05 0.0001237848 0.92362480 0.076175241
[13,] 9.999000e-05 0.1624837516 0.63743626 0.199980002
[14,] 7.617524e-05 0.0001237848 0.92362480 0.076175241
[15,] 9.999000e-05 0.1624837516 0.63743626 0.199980002
[16,] 9.999000e-05 0.1624837516 0.63743626 0.199980002
[17,] 9.999000e-05 0.1624837516 0.63743626 0.199980002
[18,] 9.999000e-05 0.1624837516 0.63743626 0.199980002
[19,] 9.999000e-05 0.1624837516 0.63743626 0.199980002
[20,] 9.999000e-05 0.1624837516 0.63743626 0.199980002

2. Using this modeling approach, what is your assessment of the probability that individual 10 will evolve
into each of the four probability classes if hired? This can be done using the model created above
and the pred() function. The arguments for that function are the model name, data and for type use
“raw”. This question is parallel to the Practice using Naïve Bayes activity you completed in R.

The probability that individual 10 will evolve into each of the four probability classes if hired is as follows:

table the probabilities of each respective class for the individual
get the 10th row only
individual10 <- pred_bayes[10,]
assign to a dataframe
individual10 <- data.frame(individual10)
rename the column
colnames(individual10) <- c('Probability')
show the table
individual10

Probability
Class1 0.00009999
Class2 0.16248375
Class3 0.63743626
Class4 0.19998000

14

Part Three

Building Classification Trees

In this part of the project, you will build classification trees. This part continues the scenario from Parts
One and Two, as it uses the same modified version of the human resources data set available on the Kaggle
website. Use the HRdata4groups.csv data set to predict each individual’s performance (Performance Score
ID) using classification trees. In the space below, you will explain the model you have developed and describe
how well it performs.

1. In the space below, explain the model you developed. It is sufficient to use the function ctree() in R
to accomplish this in the style of the codio exercise Practice: Building a Classification Tree in R—Small
Example.

hrdata_groups <- read.csv('HRdata4groups.csv') # read in the dataset

inspect the first five rows of the dataset
pandoc.table(head(hrdata_groups, 5), style = 'grid')

Table 9: Table continues below

EmpStatusID PerfScoreID CollapseScore PayRate Age JobTenure
1 4 1 23 43 8
1 3 1 16 50 8
5 3 1 21 37 9
1 1 0 20 53 6
1 1 0 18 31 5

EngagementSurvey EmpSatisfaction MechanicalApt VerbalApt
5 5 174.6 187.2
5 3 110.6 102.7
2 4 148.6 156.1

1.12 2 49.11 44.86
1.56 5 42.15 41.59

str(hrdata_groups) # print out the structure of the dataframe

’data.frame’: 193 obs. of 10 variables:
$ EmpStatusID : int 1 1 5 1 1 1 1 5 5 5 ...
$ PerfScoreID : int 4 3 3 1 1 4 4 3 3 3 ...
$ CollapseScore : int 1 1 1 0 0 1 1 1 1 1 ...
$ PayRate : num 23 16 21 20 18 16 20 24 15 22 ...
$ Age : int 43 50 37 53 31 40 46 50 48 37 ...
$ JobTenure : int 8 8 9 6 5 6 6 9 8 7 ...
$ EngagementSurvey: num 5 5 2 1.12 1.56 3.39 4.76 3.49 3.08 3.18 ...
$ EmpSatisfaction : int 5 3 4 2 5 4 4 4 4 3 ...
$ MechanicalApt : num 174.6 110.6 148.6 49.1 42.2 ...
$ VerbalApt : num 187.2 102.7 156.1 44.9 41.6 ...

15

Before modeling can commence, it is important to establish between-predictor relationships and the potential
presence of multicollinearity, because this is a refined dataset from a new .csv file. The classification trees
model is developed from all variables except for mechanical aptitude and verbal aptitude. Verbal aptitude
exhibits a noticeably high correlation of r = 0.96 with mechanical aptitude. However, rather than omitting
this one variable, both aptitude columns are replaced with a new column by the name of aptitude which has
been averaged from their results.

Examine between predictor correlations/multicollinearity
highCorr <- findCorrelation(cor(hrdata_groups[c(-2)]), cutoff = 0.75,

names = TRUE)
cat(' The following variables should be omitted: \n', paste(unlist(highCorr)))

The following variables should be omitted:
VerbalApt

VerbalApt exhibits multicollinearity, so it is averaged with MechanicalApt, just like in part one. A replace-
ment column called Aptitude is once again created on this refined dataset.

create aptitude from averaged MechanicalApt and VerbalApt scores
hrdata_groups$Aptitude <- rowMeans(hrdata_groups[, c(9, 10)], na.rm = TRUE)
mechanical aptitude, and verbal aptitude are omitted
hrgroups_final <- hrdata_groups[, c(-9, -10)] # finalize dataframe for modeling

Between-predictor relationships are once again re-examined to ensure no residual multicollinearity is detected.

Re-examine between predictor correlations/multicollinearity
highCorr <- findCorrelation(cor(hrgroups_final[, c(-2)]), cutoff = 0.75,

names = TRUE)
cat(' The following variables should be omitted:', '\n',
paste(unlist(highCorr)))

The following variables should be omitted:
##

build the classification tree
ctout <- ctree(PerfScoreID ~ ., data = hrgroups_final)
ctout

##
Model formula:
PerfScoreID ~ EmpStatusID + CollapseScore + PayRate + Age + JobTenure +
EngagementSurvey + EmpSatisfaction + Aptitude
##
Fitted party:
[1] root
| [2] CollapseScore <= 0
| | [3] Aptitude <= 53.89066: 1.000 (n = 8, err = 0.0)
| | [4] Aptitude > 53.89066: 2.000 (n = 13, err = 0.0)
| [5] CollapseScore > 0
| | [6] Aptitude <= 154.50311: 3.052 (n = 154, err = 7.6)
| | [7] Aptitude > 154.50311: 3.889 (n = 18, err = 1.8)
##
Number of inner nodes: 3
Number of terminal nodes: 4

16

predict the performance score based on all input features of final df
ctpred <- predict(ctout, hrgroups_final)

Check the percentage of time that the classification tree correctly classifies
a data point
cat('Correct Classification of Data Point:',

mean(ctpred == hrgroups_final$PerfScoreID))

Correct Classification of Data Point: 0.1088083

plot(ctout) # plot the classification tree

CollapseScore
p < 0.001

1

£ 0 > 0

Aptitude
p < 0.001

2

£ 53.891 > 53.891

Node 3 (n = 8)

1
1.5

2
2.5

3
3.5

4

Node 4 (n = 13)

1
1.5

2
2.5

3
3.5

4

Aptitude
p < 0.001

5

£ 154.503 > 154.503

Node 6 (n = 154)

1
1.5

2
2.5

3
3.5

4

Node 7 (n = 18)

1
1.5

2
2.5

3
3.5

4

2. In the space below, describe how well your model performs.

Whenever a CollapseScore is less than or equal to zero, it is classified as unacceptable or unsatisfactory
performance. Thus, under this umbrella category, aptitude scores less than or equal to 53.89 (level 1) exhibit
no error (third node), where n = 8. Aptitude scores greater than 53.89066 (level 2) exhibit no error, where
n = 13.

Whenever a CollapseScore is greater than 0, employee performance is classified as acceptable or satisfactory.
Under this umbrella category, aptitude scores less than or equal to 154.50 reach a node level of 3.052, with
an error of 7.6, where n = 154 observations. Aptitude scores greater than 154.50 reach a higher node level
of 3.89, where there are n = 18 observations, and a lower error rate of 1.8.

There are three inner nodes and four terminal nodes, with a correct classification of data points at approxi-
mately 11%. The performance is low, and this model warrants iterative refinement.

17

Part Four

Applying SVM to a Data Set

In this part of the project, you will apply SVM to a data set. The RStudio instance contains the file
acquisitionacceptanceSVM.csv, which includes information about whether or not homeowners accepted
a government offer to purchase their home.

1. Apply the tool SVM to the acquisition data set in the CSV file acquisitionacceptanceSVM.csv to
predict which homeowners will most likely accept the government’s offer. What variables did you
choose to use in your analysis?

acquisition <- read.csv('acquisitionacceptanceSVM.csv') # read in the dataset

inspect the dataframe
pandoc.table(head(acquisition), style = 'grid')

Table 11: Table continues below

Distance Floodplain HomeTenure Education345 CurMarketValue
162.8 1 1 1 650000
108.3 1 14 0 30000
4.55 1 19 1 50000
81.28 1 37 1 78000
183.2 1 9 1 127300
32.05 1 57 0 35000

After Price100 Price75 Price90 Price110 Price125 Accept
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 1
0 1 0 0 0 0 0
0 1 0 0 0 0 1

str(acquisition) # obtain the structure of the dataframe

’data.frame’: 1531 obs. of 12 variables:
$ Distance : num 162.75 108.26 4.55 81.28 183.21 ...
$ Floodplain : int 1 1 1 1 1 1 1 1 1 1 ...
$ HomeTenure : int 1 14 19 37 9 57 11 65 1 25 ...
$ Education345 : int 1 0 1 1 1 0 0 0 1 1 ...
$ CurMarketValue: int 650000 30000 50000 78000 127300 35000 400000 80000 360000 300000 ...
$ After : int 0 0 0 0 0 0 0 0 0 0 ...
$ Price100 : int 1 1 1 1 1 1 1 1 1 1 ...
$ Price75 : int 0 0 0 0 0 0 0 0 0 0 ...
$ Price90 : int 0 0 0 0 0 0 0 0 0 0 ...
$ Price110 : int 0 0 0 0 0 0 0 0 0 0 ...
$ Price125 : int 0 0 0 0 0 0 0 0 0 0 ...
$ Accept : int 0 0 0 1 0 1 0 0 0 0 ...

18

nearzerohist(acquisition[c(-12)], x = 4, y = 3)

[1] "There are no near-zero variance predictors."

Distance

Distance

F
re

qu
en

cy

0 50 100 150 200

0
10

0
25

0

Floodplain

Floodplain

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0
0

40
0

10
00

HomeTenure

HomeTenure

F
re

qu
en

cy

0 10 20 30 40 50 60 70

0
20

0
40

0

Education345

Education345

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

0
80

0

CurMarketValue

CurMarketValue

F
re

qu
en

cy

0e+00 2e+07 4e+07

0
50

0
15

00

After

After

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0
0

20
0

60
0

Price100

Price100

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

0
10

00

Price75

Price75

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

0
80

0

Price90

Price90

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

0
80

0

Price110

Price110

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

0
80

0

Price125

Price125

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

0
80

0

19

Inspecting the dataframe for near zero variance predictors from a visual standpoint alone identifies current
market value CurMarketValue to be a variable that exhibits such behavior. However, the nearZeroVar
function from the ‘caret‘ library does not expose such variables. Near zero variance measures the fraction of
unique values in the columns across the dataset.

Moreover, the correlation matrix does not expose any sources of high between-predictor relationships (beyond
the cutoff point of r = 0.75). This relegates the variable selection process to Principal Component Analysis
(PCA), but this is a dimensionality reduction technique; there are only 12 variables and 1,531 rows of data.

multicollinearity(acquisition)

1

0.29

−0.22

0.21

−0.02

0

−0.01

0

0

0

0

−0.03

1

−0.05

0.04

0.02

0

−0.02

0.01

0.01

0.01

0.01

0.02

1

−0.27

0

0

0.01

0

0

0

0

−0.09

1

0.08

0

−0.01

0

0

0

0

0.06

1

0

0.04

−0.02

−0.02

−0.02

−0.02

0.03

1

−0.35

0

0

0

0

0.2

1

−0.17

−0.17

−0.17

−0.17

−0.03

1

−0.24

−0.24

−0.24

−0.38

1

−0.24

−0.24

−0.21

1

−0.24

0.17

1

0.31 1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Dist
an

ce

Floo
dp

lai
n

Hom
eT

en
ur

e

Edu
ca

tio
n3

45

Cur
M

ar
ke

tV
alu

e

Afte
r

Pric
e1

00

Pric
e7

5

Pric
e9

0

Pric
e1

10

Pric
e1

25

Acc
ep

t

Distance

Floodplain

HomeTenure

Education345

CurMarketValue

After

Price100

Price75

Price90

Price110

Price125

Accept

The following variables should be omitted:
##

Casting the target Accept variable to a factor is done to categorize the data. There are enough rows in this
dataset to carry out a train-test split, and so it is done, with 70% partitioned into the training set, and the
remaining 30% into the test set.

acquisition$Accept <- as.factor(acquisition$Accept)
acquisition$Accept <- ifelse(acquisition$Accept == 1, 'Accept', 'Not Accept')
acquisition$Accept <- as.factor(acquisition$Accept)

set.seed(222) # set seed for reproducibility

Use 70% of dataset as training set and remaining 30% as testing set

20

sample <- sample(c(TRUE, FALSE), nrow(acquisition), replace = TRUE,
prob = c(0.7, 0.3))

train_acquisition <- acquisition[sample,] # training set
test_acquisition <- acquisition[!sample,] # test set

cat(' Training Dimensions:', dim(train_acquisition),
'\n Testing Dimensions:', dim(test_acquisition), '\n',
'\n Training Dimensions Percentage:', round(nrow(train_acquisition) /

nrow(acquisition), 2),
'\n Testing Dimensions Percentage:', round(nrow(test_acquisition) /

nrow(acquisition), 2))

Training Dimensions: 1067 12
Testing Dimensions: 464 12
##
Training Dimensions Percentage: 0.7
Testing Dimensions Percentage: 0.3

predictors <- train_acquisition[, c(-12)] # extract ind. var. from train set
target <- train_acquisition[, c(12)] # extract dep. var. from train set
target <- as.factor(target) # cast target as factor

Since the e1071 package does not allow for a printout of variable importance (varImpt()) for feature
selection, the caret package is used to accomplish this task, and the results are shown below. Price75
and Price125 are the top two variables surpassing a score of 80 in importance and are thus selected for the
soft-margin support vector machine.

Support Vector Machines via caret
model_svm <- train(predictors, target, method = 'svmLinear', verbose = FALSE)
plot the variable importance
svm_varimp <- varImp(object = model_svm)
ggplot2::ggplot(varImp(object = model_svm)) +

ggtitle('SVM - Variable Importance') +
scale_y_continuous(expand = c(0, 0)) +
theme_classic() + theme(plot.margin = unit(c(0, 1, 0, 0), 'cm')) +
theme(axis.text = element_text(color = 'black'),

axis.title = element_text(color = 'black'))

Floodplain
Price100

CurMarketValue
Education345

Distance
HomeTenure

Price110
Price90

After
Price125
Price75

0 25 50 75 100
Importance

F
ea

tu
re

SVM − Variable Importance

21

The model’s cost and kernel hyperparameters are tuned over the training data with a 10-fold cross validation
sampling method. The optimal hyperparameter values are shown in table below.

train_df <- train_acquisition[, c(8, 11, 12)]
test_df <- test_acquisition[, c(8, 11, 12)]

column names of df to confirm cols
pandoc.table(colnames(train_df))

Price75 Price125 Accept

tune the support vector machine, optimizing the hyperparameters
of gamma, cost, and epsilon
set.seed (222) # set seed for reproducibility
tune.out <- tune(svm, Accept ~ Price75 + Price125, data = train_df,

ranges = list(cost = 10 ˆ seq(-3, 3),
kernel = c('linear', 'polynomial',

'radial')))

bestparam <- tune.out$best.parameters # best hyperparamaters
bestmod <- tune.out$best.model # best model based on tuning parameters
pandoc.table(bestparam, style = 'grid') # print out the best hyperparamaters

cost kernel
2 0.01 linear

These hyperparameters are used to create a soft margin support vector machine.

Construct Soft Margin SVM
acquisition_result <- svm(Accept ~ Price125 + Price75, kernel = 'linear',

gamma = 0.001, cost = 0.01, epsilon = 0,
data = train_df, decision.values = TRUE)

print(acquisition_result)

##
Call:
svm(formula = Accept ~ Price125 + Price75, data = train_df, kernel = "linear",
gamma = 0.001, cost = 0.01, epsilon = 0, decision.values = TRUE)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 0.01
##
Number of Support Vectors: 802

The classification results are visualized below.

22

Visualize the SVM decision boundary using only the training data using price75
and price125 as features
plot(acquisition_result, data = train_df)

A
cc

ep
t

N
ot

 A
cc

ep
t

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ooo

oo

xx xxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx xxx

xx

SVM classification plot

Price75

P
ric

e1
25

create function for outputting a confusion matrix in a pandoc-style format
where inputs --> df1: model df
df2: dataset
feat: target column
x: H0 column (i.e., 'yes', 'accept' '1', etc.)
y: H1 column (i.e., 'no', 'not accept', '0', etc.)
custom_name: any string you want to pass into table name

conf_matrix <- function(df1, df2, feat, x, y, custom_name) {

prediction <- predict(df1, newdata = df2)
Evaluate the model on the training data and inspect first six rows
pred_table <- table(prediction, feat)
print out pander-grid-style table with performance results
metrics <- c(x, y)
h0 <- c(pred_table[1], pred_table[2])
h1 <- c(pred_table[3], pred_table[4])
create table as dataframe from above variables
table <- data.frame(metrics, h0, h1)
change column names of table
colnames(table) <- c('\n', x, y)
table %>% pander(style = 'grid', caption = sprintf('Confusion Matrix for %s',

custom_name))

}

23

conf_matrix(df1 = acquisition_result, df2 = train_df, feat = train_df$Accept,
x = 'Accept', y = 'Not Accept', custom_name = 'Train Set')

Table 15: Confusion Matrix for Train Set

Accept Not Accept
Accept 498 350
Not Accept 25 194

conf_matrix(df1 = acquisition_result, df2 = test_df, feat = test_df$Accept,
x = 'Accept', y = 'Not Accept', custom_name = 'Test Set')

Table 16: Confusion Matrix for Test Set

Accept Not Accept
Accept 233 150
Not Accept 11 70

The confusion matrix is used to obtain the first effective measure of model performance (accuracy) using the
following equation.

Accuracy = TP + TN
TP + TN + FP + FN

Precision (specificity) measures out of everyone who accepted a government offer to purchase their home,
how many actually accepted? It is calculated as follows.

Precision = TP
TP + FP

Recall (sensitivity) measures the true positive rate (TPR), which is the number of correct predictions in the
Accept class divided by the total number of Accept instances. It is calculated as follows:

Recall = TP
TP + FN

The f1 -score is the harmonic mean of precision and recall, and is calculated as follows:

f1 = TP
TP + 1

2 (FP+FN)

#
#
#
#
create function for calculating model performance metrics that takes in the
following inputs --> df1: model df
df2: dataset
feat: target column
custom_name: any string you want to pass into table name
#

24

perf_metrics <- function(df1, df2, feat, custom_name) {

prediction <- predict(df1, newdata = df2)
Evaluate the model on the training data and inspect first six rows
df <- table(prediction, feat)

tp <- df[1] # position of true positives
tn <- df[4] # position of true negatives
fp <- df[3] # position of false positives
fn <- df[2] # position of false negatives

calculate model performance metrics
accuracy <- round((tp + tn)/(tp + tn + fp + fn),2) # calculate accuracy
spec <- round((tp) / (tp + fp),2) # calculate specificity (precision)
sens <- round((tp) / (tp + fn),2) # calculate sensitivity (recall)
f1 <- round((tp) / (tp+0.5*(fp+fn)),2) # calculate f1-score

print out pander-grid-style table with performance results
metrics <- c('Accuracy', 'Specificity', 'Sensitivity', 'F1-Score')
values <- c(accuracy, spec, sens, f1)
table <- data.frame(Metric = metrics, Value = values)
table %>% pander(style = 'grid',

caption = sprintf('Performance Metrics for %s', custom_name))

}

call the `perf_metrics` function to establish performance metrics for train set
perf_metrics(df1 = acquisition_result, df2 = train_df, feat = train_df$Accept,

custom_name = 'Training Set')

Table 17: Performance Metrics for Training Set

Metric Value
Accuracy 0.65
Specificity 0.59
Sensitivity 0.95
F1-Score 0.73

call the `perf_metrics` function to establish performance metrics for test set
perf_metrics(df1 = acquisition_result, df2 = test_df, feat = test_df$Accept,

custom_name = 'Test Set')

Table 18: Performance Metrics for Test Set

Metric Value
Accuracy 0.65
Specificity 0.61
Sensitivity 0.95
F1-Score 0.74

25

2. How good was your model at correctly predicting who would and who would not accept the offer?

Using the test data (30% hold out), the model’s accuracy is only 15% improvement above baseline, coming
out to 65%. However, the model’s ability to correctly classify the Accept class is effectively high at 95%
specificity. The ROC Curve calculates an AUC (area under the curve) score of 64%, so model performance
is quite low. Moreover, the ROC Curve below shows that as the true positive rate increases, so does the
false positive rate, so, for every increase in the false positive rate, there is a greater increase in false alarms.

test_prob <- predict(acquisition_result, test_df, type = 'decision')
pr <-prediction(as.numeric(test_prob), as.numeric(test_df$Accept))
prf <- performance(pr, measure = 'tpr', x.measure = 'fpr')
test_roc <- roc(test_df$Accept ~ as.numeric(test_prob), print.auc = TRUE)
auc <- round(as.numeric(test_roc$auc), 2); par(mar = c (4, 4, 2, 1))
plot(prf, main = 'SVM ROC Curve', col = 'red', xlab = 'False Positive Rate',

ylab = 'True Positive Rate')
abline(0, 1, col = 'black', lty = 2, lwd = 1)
legend(0.73, 0.2, legend = paste('AUC =', rev(auc)), lty = c(1), col = c('red'))

SVM ROC Curve

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC = 0.64

3. When building models, we often use part of the data to estimate the model and use the remainder for
prediction. Why do we do this? It is not necessary to do this for each of the problems above. It is
essential to realize that you will need to do this in practice.

We are interested in seeing how the model performs on unseen data. Thus, we partition the data into a
train-test split. Ideally, there are enough rows of data to conduct a three-way train-validation-test split such
that the train-validation set becomes the development set. However, we are working with a smaller amount
of data, so we are using a two-way split, where the training set (development set) is the larger portion of
data (70-80%), and the remaining 30% is allocated to the test set. Anything can be done repeatedly to
the development set (e.g., iteration, hyperparameterization, experimentation, etc.), as long as the test set
remains uncontaminated (unseen). Once the model is finalized through the training set, it can be predicted
on the remaining test set.

26

	Shpaner_Leonid_CEEM585_Worksheet
	Shpaner, Leonid
	Supervised Learning Techniques Course Project

	PDF_CEEM585_Project_Shpaner_Leonid
	Part One
	Building A Model

	Part Two
	Using Naïve Bayes to Predict a Performance Score

	Part Three
	Building Classification Trees

	Part Four
	Applying SVM to a Data Set

