
Classifying Emotions in Tweets - MSADS 509 - Applied Text Mining
University of San Diego, M.S. Applied Data Science
Christopher Robinson, Jose Luis Estrada, Leonid Shpaner

GitHub Repository
https://github.com/lshpaner/twitter_emotions

This notebook implements a text mining sentiment analysis project

First we fetch the data from google drive

Data Source:
http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip

The zip file contains data in CSV format with emoticons removed. Data has 6 fields:

0 - the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive)
1 - the id of the tweet (2087)
2 - the date of the tweet (Sat May 16 23:58:44 UTC 2009)
3 - the query (lyx). If there is no query, then this value is NO_QUERY.
4 - the user that tweeted (robotickilldozr)
5 - the text of the tweet (Lyx is cool)

Import Libraries

[1]: %matplotlib inline
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
from sklearn import preprocessing
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.decomposition import NMF, TruncatedSVD, LatentDirichletAllocation
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, roc_auc_score, roc_curve
from sklearn.pipeline import Pipeline
from sklearn.cluster import KMeans
import string
from string import punctuation
import nltk
import re
import subprocess
from wordcloud import WordCloud
from collections import Counter, defaultdict
nltk.download('punkt')
from nltk.corpus import stopwords
stop = stopwords.words("english")

[nltk_data] Downloading package punkt to
[nltk_data] C:\Users\Chris\AppData\Roaming\nltk_data…
[nltk_data] Package punkt is already up-to-date!

[2]: pd.set_option('display.max_rows', None)

1

https://github.com/lshpaner/twitter_emotions

Read data
[3]: #Pulling data from Google Drive from Stanford Engineering Computer Science␣

↪→Department's website
def download_gdrive(id, print_stout=True):
coomand = 'gdown https://drive.google.com/uc?id={}'.format(id)
returned_value = subprocess.run(coomand, shell=True, stdout=subprocess.PIPE,␣

↪→stderr=subprocess.STDOUT)
if print_stout: print(returned_value.stdout.decode("utf-8"))
else: print("Download Complete")

train_data = download_gdrive("10rDgl5zAvUdVgSoVngHfwJnf8I1tdpZi", print_stout=True)
test_data = download_gdrive("10qeDcgwdJC76Nv5cCj6WsUYjD6846fEL", print_stout=True)

Downloading…
From: https://drive.google.com/uc?id=10rDgl5zAvUdVgSoVngHfwJnf8I1tdpZi
To: C:\Users\Chris\Desktop\ADS509\Project\train_data.csv
100%|##########| 239M/239M [00:15<00:00, 15.1MB/s]

Downloading…
From: https://drive.google.com/uc?id=10qeDcgwdJC76Nv5cCj6WsUYjD6846fEL
To: C:\Users\Chris\Desktop\ADS509\Project\test_data.csv
100%|##########| 74.3k/74.3k [00:00<00:00, 3.92MB/s]

[4]: #Read train and test sets
columns = ['polarity', 'tweetid', 'date', 'query_name', 'user', 'text']
dftrain = pd.read_csv('train_data.csv',

header = None,
encoding ='ISO-8859-1')

dftest = pd.read_csv('test_data.csv',
header = None,
encoding ='ISO-8859-1')

dftrain.columns = columns
dftest.columns = columns

[5]: #Sample 1M entries from the training set
dftrain = dftrain.sample(1000000)

Text pre-processing

[6]: #Remove punctuation on texts to just analyze text
def remove_punctuations(text):

for punctuation in string.punctuation:
text = text.replace(punctuation, '')

return text
#Replace url and username's links to tokens URL and USERNAME
class PrePreprocess(object):

user_pat = '(?<=^|(?<=[^a-zA-Z0-9-_\.]))@([A-Za-z]+[A-Za-z0-9]+)'
http_pat = '(https?:\/\/(?:www\.|(?!www))[^\s\.]+\.[^\s]{2,}|www\.[^\s]+\.

↪→[^\s]{2,})'

2

repeat_pat, repeat_repl = "(.)\\1\\1+",'\\1\\1'
def __init__(self):

pass

def transform(self, X):
is_pd_series = isinstance(X, pd.core.frame.Series)
if not is_pd_series:

pp_text = pd.Series(X)
else:

pp_text = X
pp_text = pp_text.str.replace(pat = self.user_pat, repl = 'USERNAME')
pp_text = pp_text.str.replace(pat = self.http_pat, repl = 'URL')
pp_text.str.replace(pat = self.repeat_pat, repl = self.repeat_repl)
return pp_text

def fit(self, X, y=None):
return self

Descriptive statistics

[7]: #Descriptive statistics with function that analyzes number of tokens
def descriptive_stats(tokens, top_num_tokens = 5, verbose=True) :

"""
Given a list of tokens, print number of tokens, number of unique tokens,
number of characters, lexical diversity
(https://en.wikipedia.org/wiki/Lexical_diversity),
and num_tokens most common tokens. Return a list with the number of
tokens, number of unique tokens, lexical diversity, and number of
characters.

"""

Fill in the correct values here.
num_tokens = len(tokens)
num_unique_tokens = len(set(tokens))
lexical_diversity = num_unique_tokens/num_tokens
num_characters = len("".join(tokens))

if verbose :
print(f"There are {num_tokens} tokens in the data.")
print(f"There are {num_unique_tokens} unique tokens in the data.")
print(f"There are {num_characters} characters in the data.")
print(f"The lexical diversity is {lexical_diversity:.3f} in the data.")

print the five most common tokens
index = pd.Index(tokens)
index.value_counts()
df = pd.DataFrame(index.value_counts())
top5 = df.head(top_num_tokens)
print(top5.index.tolist())

3

return([num_tokens, num_unique_tokens,
lexical_diversity,
num_characters])

def count_words(df, column='tokens', preprocess=None, min_freq=1):

process tokens and update counter
def update(doc):

tokens = doc if preprocess is None else preprocess(doc)
counter.update(tokens)

create counter and run through all data
counter = Counter()
df[column].map(update)

transform counter into data frame
freq_df = pd.DataFrame.from_dict(counter, orient='index', columns=['freq'])
freq_df = freq_df.query('freq >= @min_freq')
freq_df.index.name = 'token'

return freq_df#.sort_values('freq', ascending=False)

def display_topics(model, features, no_top_words=5):
for topic, words in enumerate(model.components_):

total = words.sum()
largest = words.argsort()[::-1] # invert sort order
print("\nTopic %02d" % topic)
for i in range(0, no_top_words):

print(" %s (%2.2f)" % (features[largest[i]],
abs(words[largest[i]]*100.0/total)))

def wordcloud(word_freq, title=None, max_words=200, stopwords=None):

wc = WordCloud(width=800, height=400,
background_color= "black", colormap="Paired",
max_font_size=150, max_words=max_words)

convert data frame into dict
if type(word_freq) == pd.Series:

counter = Counter(word_freq.fillna(0).to_dict())
else:

counter = word_freq

wc.generate_from_frequencies(counter)

plt.title(title)

4

plt.imshow(wc, interpolation='bilinear')
plt.axis("off")

def wordcloud_clusters(model, vectors, features, no_top_words=5):
for cluster in np.unique(model.labels_):

size = {}
words = vectors[model.labels_ == cluster].sum(axis=0).A[0]
largest = words.argsort()[::-1] # invert sort order
for i in range(0, no_top_words):

size[features[largest[i]]] = abs(words[largest[i]])
wc = WordCloud(background_color="white", max_words=100,

width=960, height=540)
wc.generate_from_frequencies(size)
plt.figure(figsize=(12,12))
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")

[8]: # Remove Stopwords
dftrain['text'] = dftrain['text'].apply(lambda x: ' '.join([word for word \

in x.split() if word not in (stop)]))

p = PrePreprocess()
#PRE-Process step
dftrain['tokens'] = p.transform(dftrain['text'])
dftrain['tokens'] = dftrain['tokens'].apply(remove_punctuations)
##word_tokenize
dftrain['tokens'] = dftrain.apply(lambda row: nltk.word_tokenize(row['tokens']),

axis=1)

print("DESCRIPTIVE STATS ON Tokens: ")
all = []
#on 100k data
#for li in dftrain['text'].sample(100).iteritems(): all += li[1]
#on all data
for li in dftrain['tokens'].iteritems(): all += li[1]

descriptive_stats(all, verbose=True)
print("\n")

print("DESCRIPTIVE STATS ON SENTIMENT POLARITY:")
dftrain['polarity'].describe()

DESCRIPTIVE STATS ON Tokens:
There are 8676094 tokens in the data.
There are 419665 unique tokens in the data.
There are 43095701 characters in the data.
The lexical diversity is 0.048 in the data.
['USERNAME', 'I', 'Im', 'get', 'day']

5

DESCRIPTIVE STATS ON SENTIMENT POLARITY:

[8]: count 1000000.00000
mean 1.99784
std 2.00000
min 0.00000
25% 0.00000
50% 0.00000
75% 4.00000
max 4.00000
Name: polarity, dtype: float64

[9]: dftrain.head(10)

[9]: polarity tweetid date query_name \
341044 0 2014963399 Wed Jun 03 03:15:55 PDT 2009 NO_QUERY
741824 0 2266376131 Sun Jun 21 08:24:00 PDT 2009 NO_QUERY
963790 4 1827470235 Sun May 17 10:46:42 PDT 2009 NO_QUERY
1494963 4 2069827015 Sun Jun 07 16:35:58 PDT 2009 NO_QUERY
951563 4 1824267900 Sun May 17 00:40:30 PDT 2009 NO_QUERY
1065129 4 1964871845 Fri May 29 14:56:51 PDT 2009 NO_QUERY
988099 4 1834729207 Mon May 18 04:00:31 PDT 2009 NO_QUERY
1024864 4 1883348972 Fri May 22 08:24:37 PDT 2009 NO_QUERY
449326 0 2069224343 Sun Jun 07 15:29:18 PDT 2009 NO_QUERY
1218083 4 1989797737 Mon Jun 01 02:50:43 PDT 2009 NO_QUERY

user text \
341044 chillysella @nadirairdiana nad,jadi nonton pcd? dont watch…
741824 iamAlexMcKerrow Actually I grasp Trigonometry 3d all, gonna re…
963790 flarrossa @lisesilveira hey bitch
1494963 iRelvs2lv @hazyeyez u def dye sounds hot haha
951563 stevemanch @trunty_me_jazzo may ?? Never know
1065129 Adele_x @rhea123 lol yep good old days
988099 FieFieSoMajor @Coodieranks morning boo
1024864 xbeckaxockx finished sophomore year highschool today. I wi…
449326 barneygale BNP seat. #eu09
1218083 TwittingNala one exam go!!! semester least

tokens
341044 [USERNAME, nadjadi, nonton, pcd, dont, watch, …
741824 [Actually, I, grasp, Trigonometry, 3d, all, go…
963790 [USERNAME, hey, bitch]
1494963 [USERNAME, u, def, dye, sounds, hot, haha]
951563 [USERNAMEmejazzo, may, Never, know]
1065129 [USERNAME, lol, yep, good, old, days]
988099 [USERNAME, morning, boo]
1024864 [finished, sophomore, year, highschool, today,…
449326 [BNP, seat, eu09]
1218083 [one, exam, go, semester, least]

[10]: #Identify positive and negative tweets based on polarity
#Count frequency of tokens used in each dataset

6

cv = CountVectorizer()
cv.fit(dftrain.text)
neg_doc_matrix = cv.transform(dftrain[dftrain.polarity == 0].text)
pos_doc_matrix = cv.transform(dftrain[dftrain.polarity == 4].text)
neg_tf = np.sum(neg_doc_matrix,axis=0)
pos_tf = np.sum(pos_doc_matrix,axis=0)
neg = np.squeeze(np.asarray(neg_tf))
pos = np.squeeze(np.asarray(pos_tf))
term_freq_df = pd.DataFrame([neg,pos],

columns=cv.get_feature_names()
).transpose()

term_freq_df.columns = ['negative', 'positive']
term_freq_df['total'] = term_freq_df['negative'] + term_freq_df['positive']
term_freq_df.sort_values(by='total',

ascending=False
).iloc[:10]

[10]: negative positive total
good 18298 38797 57095
it 27122 29015 56137
day 24909 29535 54444
get 28494 22823 51317
like 25747 23259 49006
go 28515 17590 46105
quot 16560 28667 45227
http 15131 29439 44570
today 23685 18600 42285
you 13567 28319 41886

[11]: #Show top 50 negative tokens in tweets
y_pos = np.arange(50)
plt.figure(figsize=(12,10))
plt.bar(y_pos,

term_freq_df.sort_values(by='negative',ascending=False)
['negative'][:50],
align='center',
alpha=0.5)

plt.xticks(y_pos,
term_freq_df.sort_values(by='negative',ascending=False)

['negative']
[:50].index,
rotation='vertical')

plt.ylabel('Frequency')
plt.title('Top 50 tokens in Negative Tweets')
plt.xlabel('Top 50 Negative Tokens')
plt.show()

7

[12]: neg_word_freq = count_words(dftrain[dftrain["polarity"] == 0])
wordcloud(neg_word_freq['freq'], max_words=100,

stopwords=neg_word_freq.head(50).index)

8

[13]: #Show top 50 positive tokens in tweets
y_pos = np.arange(50)
plt.figure(figsize=(12,10))
plt.bar(y_pos,

term_freq_df.sort_values(by='positive',ascending=False)
['positive'][:50],
align='center',
alpha=0.5)

plt.xticks(y_pos,
term_freq_df.sort_values(by='positive',ascending=False)

['positive']
[:50].index,
rotation='vertical')

plt.ylabel('Frequency')
plt.xlabel('Top 50 Positive Tokens')
plt.title('Top 50 tokens in Positive tweets')
plt.show()

9

[14]: pos_word_freq = count_words(dftrain[dftrain["polarity"] == 4])
wordcloud(pos_word_freq['freq'], max_words=100,

stopwords=pos_word_freq.head(50).index)

Train and test model
[15]: #Trained model with logic regression algorithm

sentiment_lr = Pipeline([('pre_processor', p),
('cvect', CountVectorizer(min_df = 50)),
("scaler", preprocessing.StandardScaler(with_mean=False)),
('lr', LogisticRegression())])

sentiment_lr.fit(dftrain.text, dftrain.polarity)

#all test
Xtest, ytest = dftest.text, dftest.polarity
print(classification_report(ytest,sentiment_lr.predict(Xtest), labels=np.
↪→unique(sentiment_lr.predict(Xtest))))

precision recall f1-score support

0 0.75 0.73 0.74 177
4 0.49 0.88 0.63 182

micro avg 0.58 0.81 0.67 359
macro avg 0.62 0.80 0.68 359

weighted avg 0.62 0.81 0.68 359

[16]: # test

class FinalModel:
def __init__(self, sentiment_model, dangerous_tags):

self.model = sentiment_model ##LR

10

self.tags = dangerous_tags ##LR
def predict(self, text):

out = self.model.predict_proba(text)
print(out)
score = 0
if out[0][0] > 0.60: score = -1
elif out[0][1] > 0.60: score = 1

tok = self.model.named_steps['cvect'].transform([text])
word_list = self.model.named_steps['cvect'].get_feature_names_out()
count_list = tok.toarray().sum(axis=0)
o = dict(zip(word_list,count_list)) #this is the features used to predict!

flag = False
print(text)
for char in text.split():

if char in self.tags: flag = True

return (score, flag)

dangerous_tags = {"kill","killed", "shoot", "attack", "hurt","gun","guns", \
"weapon", "die", "bleed", "suicide","shooting","rifle", "choke", \
"punch","massacre","shooting","pain","revenge","bomb", \
"destroy","Stick","Knife","Blade","Club","Ax","Sword",\
"Spear","Halberd","Pike","Lance","Revolver","Rifle", \
"Shotgun","Semi Automatic Gun","Fully Automatic Gun",\
"Machine Gun","Crossbow","Flamethrower","Grenade",\
"Nerve Gas","Mustard Gas","Tear Gas","Pepper Spray", "AR15","AR-15"}

model = FinalModel(sentiment_model=sentiment_lr, dangerous_tags=dangerous_tags)

Test model with designed examples

[17]: text = "Hello big beautiful world"
print(text)
pred = model.predict(text)
print("Sentiment score: {} \t is it dangerous: {}".format(pred, \

True if pred[0]==-1 and pred[1]==True else False))
print("\n")

text = "I hate this stupid world!!"
print(text)
pred = model.predict(text)
print("Sentiment score: {} \t is it dangerous: {}".format(pred, \

True if pred[0]==-1 and pred[1]==True else False))
print("\n")

text = "I will hurt you tomorrow"
print(text)

11

pred = model.predict(text)
print("Sentiment score: {} \t is it dangerous: {}".format(pred, \

True if pred[0]==-1 and pred[1]==True else False))
print("\n")

text = "That movie killed me! It was great"
print(text)
pred = model.predict(text)
print("Sentiment score: {} \t is it dangerous: {}".format(pred, \

True if pred[0]==-1 and pred[1]==True else False))
print("\n")

text = "Im going to punch the stupid teacher tomorrow!"
print(text)
pred = model.predict(text)
print("Sentiment score: {} \t is it dangerous: {}".format(pred, \

True if pred[0]==-1 and pred[1]==True else False))
print("\n")

text = "I like fruit punch" #testing bad spelling
print(text)
pred = model.predict(text)
print("Sentiment score: {} \t is it dangerous: {}".format(pred, \

True if pred[0]==-1 and pred[1]==True else False))
print("\n")

text = "i enjoy to kill zombies on my playstation!" #testing bad spelling
print(text)
pred = model.predict(text)
print("Sentiment score: {} \t is it dangerous: {}".format(pred, \

True if pred[0]==-1 and pred[1]==True else False))
print("\n")

text = "Just got out of shooting practice" #testing bad spelling
print(text)
pred = model.predict(text)
print("Sentiment score: {} \t is it dangerous: {}".format(pred, \

True if pred[0]==-1 and pred[1]==True else False))
print("\n")

text = "Im bringing my AR15 to hurt everyone" #testing bad spelling
print(text)
pred = model.predict(text)
print("Sentiment score: {} \t is it dangerous: {}".format(pred, \

True if pred[0]==-1 and pred[1]==True else False))
print("\n")

text = "I like shooting my AR-15 after school" #testing bad spelling
print(text)
pred = model.predict(text)
print("Sentiment score: {} \t is it dangerous: {}".format(pred, \

12

True if pred[0]==-1 and pred[1]==True else False))
print("\n")

text = "I am going to shoot you" #testing bad spelling
print(text)
pred = model.predict(text)
print("Sentiment score: {} \t is it dangerous: {}".format(pred, \

True if pred[0]==-1 and pred[1]==True else False))
print("\n")

text = "I was going shooting tommorow but I hurn my hand." #testing bad spelling
print(text)
pred = model.predict(text)
print("Sentiment score: {} \t is it dangerous: {}".format(pred, \

True if pred[0]==-1 and pred[1]==True else False))
print("\n")

Hello big beautiful world
[[0.06974756 0.93025244]]
Hello big beautiful world
Sentiment score: (1, False) is it dangerous: False

I hate this stupid world!!
[[0.91563958 0.08436042]]
I hate this stupid world!!
Sentiment score: (-1, False) is it dangerous: False

I will hurt you tomorrow
[[0.68821564 0.31178436]]
I will hurt you tomorrow
Sentiment score: (-1, True) is it dangerous: True

That movie killed me! It was great
[[0.53942551 0.46057449]]
That movie killed me! It was great
Sentiment score: (0, True) is it dangerous: False

Im going to punch the stupid teacher tomorrow!
[[0.72408045 0.27591955]]
Im going to punch the stupid teacher tomorrow!
Sentiment score: (-1, True) is it dangerous: True

I like fruit punch
[[0.43423355 0.56576645]]
I like fruit punch
Sentiment score: (0, True) is it dangerous: False

13

i enjoy to kill zombies on my playstation!
[[0.35594534 0.64405466]]
i enjoy to kill zombies on my playstation!
Sentiment score: (1, True) is it dangerous: False

Just got out of shooting practice
[[0.30373027 0.69626973]]
Just got out of shooting practice
Sentiment score: (1, True) is it dangerous: False

Im bringing my AR15 to hurt everyone
[[0.82390043 0.17609957]]
Im bringing my AR15 to hurt everyone
Sentiment score: (-1, True) is it dangerous: True

I like shooting my AR-15 after school
[[0.4934614 0.5065386]]
I like shooting my AR-15 after school
Sentiment score: (0, True) is it dangerous: False

I am going to shoot you
[[0.37671528 0.62328472]]
I am going to shoot you
Sentiment score: (1, True) is it dangerous: False

I was going shooting tommorow but I hurn my hand.
[[0.74574716 0.25425284]]
I was going shooting tommorow but I hurn my hand.
Sentiment score: (-1, True) is it dangerous: True

Logistic Regression Results/Interpretation
The results of the classification model were surprisingly good. We decided to go with a simpler approach to
detecting dangerous tweets and in the end, we thought it worked well for our purposes. When we looked at
our test tweets the model seemed to do a good job of deciding what tweets we could consider dangerous and
ones we could not. The model did a good job if there was just one topic involved in the tweet, but in testing
we were able to confuse the model with tweets that discussed multiple topics which included dangerous
words but the two statements were not related. For example, when we looked at a tweet stating “I was
going to go shooting tomorrow but I hurt my hand” it considered this a dangerous tweet because we have
multiple dangerous words in the statement but referring to different things. So, in this case the model took
“I was going to go shooting tomorrow but I hurt my hand” and equated it to a statement such as “I am
going to shoot you tomorrow and it will hurt”, which is obviously a very different statement.

In the classification performance, our indexes indicated 0 and 4; negative and positive. The dataset also has
the number 2 included, since the threshold we selected on whether a tweet is positive or negative, was 0.6.

14

So, because of this threshold, we converted this to a binary problem, in turn, converting to neutral messages.
Therefore, for the scope of this project, we wanted to know which tweets are negative, and from those, we
were going to find which were dangerous based on the tags we selected. This would help us identify some of
the dangerous tags. Having a prediction of 0.75 is relatively high for a text mining project of this magnitude.

Tuning hyperparameters and exploring different models can improve predictions on whether tweets are
positive or negative.

Our logistic regression did not have any hyperparameters tuned, but even then the negative tweets had
a better performance that we initially expected. Our performance detected how many times our positive
predictions were correct. In this case, we saw that our positive tweets did not perform that well, but for the
scope of this project it does not create a big concern. Recall tells us that from all actual positives how many
are predictive positive. Both negative and positive tweets provided an acceptable result, and to finalize with
f1 scores (the harmonic mean between precision and recall) that can be also improve after changing the
hyperparameters.

Topic Modelling

[18]: # Taking a sample from the train data for the topic modelling
Topic_Data = dftrain.sample(10000)

[19]: # TF-IDF vectorization
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer

tfidf_text_vectorizer = TfidfVectorizer(stop_words=stop, min_df=5, max_df=0.7)
tfidf_text_vectors = tfidf_text_vectorizer.fit_transform(Topic_Data['text'])
tfidf_text_vectors.shape

[19]: (10000, 2050)

[20]: k_means_text = KMeans(n_clusters=5, random_state=42)
model = k_means_text.fit(tfidf_text_vectors)

np.unique(model.labels_, return_counts=True)

sizes = []
for i in range(5):

sizes.append({"cluster": i, "size": np.sum(model.labels_==i)})
pd.DataFrame(sizes).set_index("cluster").plot.bar(figsize=(16,9))
plt.xticks(rotation=0)
plt.title('Cluster by Size')
plt.ylabel('size')
plt.show()

15

[21]: wordcloud_clusters(model, tfidf_text_vectors,
tfidf_text_vectorizer.get_feature_names())

16

17

[22]: # Fitting an LSA Model

svd_text_model = TruncatedSVD(n_components = 5, random_state=42)
W_svd_text_matrix = svd_text_model.fit_transform(tfidf_text_vectors)
H_svd_text_matrix = svd_text_model.components_

18

call display_topics
display_topics(svd_text_model, tfidf_text_vectorizer.get_feature_names())

Topic 00
good (1.57)
day (1.35)
http (1.32)
com (1.11)
work (1.06)

Topic 01
http (21.98)
com (19.50)
twitpic (14.05)
ly (4.34)
bit (4.10)

Topic 02
thanks (212.44)
quot (39.01)
love (25.33)
know (11.41)
much (10.75)

Topic 03
quot (30.24)
love (2.77)
back (2.72)
like (2.57)
lol (2.55)

Topic 04
quot (16.66)
good (15.91)
morning (8.83)
day (3.94)
luck (1.28)

Topic Modelling Results/Interpretation
The objective of LSA is reducing the overall dimension for classification. Initially, we did not feel that topic
modelling was the best approach for trying to identify dangerous tweets as tweets are not like documents in
the sense that they are essentially small and usually unstructured text focused on one specific topic that is
likely hard to derive without first grouping texts and responses together in one document. In our dataset,
the relationship between texts is unknown and any topic pattern is likely lost. The results of the topic model
were as expected with no real discernable topics emerging. For example, our first topic has keywords good,
day, http (which means there was originally a link there), work and go. So, in reality, we think that we are
essentially just seeing summaries of the tweet. This was expected as, like we mentioned before, tweets are
not really documents and are very short and narrowly focused, so this type of topic modelling really does
not work well here. In hind site, because LSA focusses on dimension reduction perhaps a different model
such as Latent Dirichlet allocation, or LDA, would have been a better choice, although we feel the outcome

19

would have been similar.

Next Steps
Since we used sentiment analysis in conjunction with tags we deemed dangerous to flag specific posts, we
believe the most obvious next step would be to add more dangerous tags to the model. We added tags
we felt were dangerous but given more time we could have done a more thorough analysis on tweets to
compile dangerous tags as I am sure there are much more out there, many of which we may not familiar
with. Additionally, because we were focused specifically on violence, we could expand the model to include
hate speech or other more subtle forms of speech which may not necessarily be identified as a direct threat
of violence but could be forms of bullying or intimidation.

Another enhancement would be more tuning of the model hyperparameters or building different models
based on performance. Due to time constraints, we built a simple effective model but given more time we
could expand the current model or explore more complex models.

Lastly, as a future enhancement we could add functionality to act on dangerous tweets as well. For example,
if the model determines a series of tweets to be dangerous the program could then suspend the users account
and/or notify authorities. The model would have to be well tested and very good at determining dangerous
tweets at this point however because we do not want an automated process going rampant on twitter shutting
down peoples accounts and calling the authorities on them because they happen to be talking about a hunting
trip or accidently cutting themselves with a knife while making dinner.

20

	Classifying Emotions in Tweets - MSADS 509 - Applied Text Mining
	Import Libraries
	Read data
	Text pre-processing
	Descriptive statistics
	Train and test model
	Test model with designed examples

	Logistic Regression Results/Interpretation
	Topic Modelling
	Topic Modelling Results/Interpretation
	Next Steps

